Reapply "[clang][bytecode] Handle bitcasts involving bitfields (#116843)"

This reverts commit 54db16221c.

Check for existence of __SIZOEF_INT128__ so we don't run those
tests on targets that don't have int128.
This commit is contained in:
Timm Bäder
2024-12-04 11:44:46 +01:00
parent ecbe4d1e36
commit 12ca72ba7f
10 changed files with 861 additions and 260 deletions

View File

@@ -0,0 +1,95 @@
//===-------------------- Bitcastbuffer.cpp ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "BitcastBuffer.h"
using namespace clang;
using namespace clang::interp;
/// Returns the value of the bit in the given sequence of bytes.
static inline bool bitof(const std::byte *B, Bits BitIndex) {
return (B[BitIndex.roundToBytes()] &
(std::byte{1} << BitIndex.getOffsetInByte())) != std::byte{0};
}
void BitcastBuffer::pushData(const std::byte *In, Bits BitOffset, Bits BitWidth,
Endian TargetEndianness) {
for (unsigned It = 0; It != BitWidth.getQuantity(); ++It) {
bool BitValue = bitof(In, Bits(It));
if (!BitValue)
continue;
Bits DstBit;
if (TargetEndianness == Endian::Little)
DstBit = BitOffset + Bits(It);
else
DstBit = size() - BitOffset - BitWidth + Bits(It);
size_t DstByte = DstBit.roundToBytes();
Data[DstByte] |= std::byte{1} << DstBit.getOffsetInByte();
}
}
std::unique_ptr<std::byte[]>
BitcastBuffer::copyBits(Bits BitOffset, Bits BitWidth, Bits FullBitWidth,
Endian TargetEndianness) const {
assert(BitWidth.getQuantity() <= FullBitWidth.getQuantity());
assert(FullBitWidth.isFullByte());
auto Out = std::make_unique<std::byte[]>(FullBitWidth.roundToBytes());
for (unsigned It = 0; It != BitWidth.getQuantity(); ++It) {
Bits BitIndex;
if (TargetEndianness == Endian::Little)
BitIndex = BitOffset + Bits(It);
else
BitIndex = size() - BitWidth - BitOffset + Bits(It);
bool BitValue = bitof(Data.get(), BitIndex);
if (!BitValue)
continue;
Bits DstBit = Bits(It);
size_t DstByte = DstBit.roundToBytes();
Out[DstByte] |= std::byte{1} << DstBit.getOffsetInByte();
}
return Out;
}
#if 0
template<typename T>
static std::string hex(T t) {
std::stringstream stream;
stream << std::hex << (int)t;
return std::string(stream.str());
}
void BitcastBuffer::dump(bool AsHex = true) const {
llvm::errs() << "LSB\n ";
unsigned LineLength = 0;
for (unsigned I = 0; I != (FinalBitSize / 8); ++I) {
std::byte B = Data[I];
if (AsHex) {
std::stringstream stream;
stream << std::hex << (int)B;
llvm::errs() << stream.str();
LineLength += stream.str().size() + 1;
} else {
llvm::errs() << std::bitset<8>((int)B).to_string();
LineLength += 8 + 1;
// llvm::errs() << (int)B;
}
llvm::errs() << ' ';
}
llvm::errs() << '\n';
for (unsigned I = 0; I != LineLength; ++I)
llvm::errs() << ' ';
llvm::errs() << "MSB\n";
}
#endif

View File

@@ -0,0 +1,88 @@
//===--------------------- BitcastBuffer.h ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_INTERP_BITCAST_BUFFER_H
#define LLVM_CLANG_AST_INTERP_BITCAST_BUFFER_H
#include <cassert>
#include <cstddef>
#include <memory>
namespace clang {
namespace interp {
enum class Endian { Little, Big };
/// A quantity in bits.
struct Bits {
size_t N = 0;
Bits() = default;
static Bits zero() { return Bits(0); }
explicit Bits(size_t Quantity) : N(Quantity) {}
size_t getQuantity() const { return N; }
size_t roundToBytes() const { return N / 8; }
size_t getOffsetInByte() const { return N % 8; }
bool isFullByte() const { return N % 8 == 0; }
bool nonZero() const { return N != 0; }
Bits operator-(Bits Other) { return Bits(N - Other.N); }
Bits operator+(Bits Other) { return Bits(N + Other.N); }
Bits operator+=(size_t O) {
N += O;
return *this;
}
bool operator>=(Bits Other) { return N >= Other.N; }
};
/// A quantity in bytes.
struct Bytes {
size_t N;
explicit Bytes(size_t Quantity) : N(Quantity) {}
size_t getQuantity() const { return N; }
Bits toBits() const { return Bits(N * 8); }
};
/// Track what bits have been initialized to known values and which ones
/// have indeterminate value.
struct BitcastBuffer {
Bits FinalBitSize;
std::unique_ptr<std::byte[]> Data;
BitcastBuffer(Bits FinalBitSize) : FinalBitSize(FinalBitSize) {
assert(FinalBitSize.isFullByte());
unsigned ByteSize = FinalBitSize.roundToBytes();
Data = std::make_unique<std::byte[]>(ByteSize);
}
/// Returns the buffer size in bits.
Bits size() const { return FinalBitSize; }
/// Returns \c true if all bits in the buffer have been initialized.
bool allInitialized() const {
// FIXME: Implement.
return true;
}
/// Push \p BitWidth bits at \p BitOffset from \p In into the buffer.
/// \p TargetEndianness is the endianness of the target we're compiling for.
/// \p In must hold at least \p BitWidth many bits.
void pushData(const std::byte *In, Bits BitOffset, Bits BitWidth,
Endian TargetEndianness);
/// Copy \p BitWidth bits at offset \p BitOffset from the buffer.
/// \p TargetEndianness is the endianness of the target we're compiling for.
///
/// The returned output holds exactly (\p FullBitWidth / 8) bytes.
std::unique_ptr<std::byte[]> copyBits(Bits BitOffset, Bits BitWidth,
Bits FullBitWidth,
Endian TargetEndianness) const;
};
} // namespace interp
} // namespace clang
#endif

View File

@@ -82,9 +82,7 @@ public:
Boolean truncate(unsigned TruncBits) const { return *this; }
static Boolean bitcastFromMemory(const std::byte *Buff, unsigned BitWidth) {
// Boolean width is currently always 8 for all supported targets. If this
// changes we need to get the bool width from the target info.
assert(BitWidth == 8);
// Just load the first byte.
bool Val = static_cast<bool>(*Buff);
return Boolean(Val);
}

View File

@@ -183,6 +183,7 @@ public:
}
Integral truncate(unsigned TruncBits) const {
assert(TruncBits >= 1);
if (TruncBits >= Bits)
return *this;
const ReprT BitMask = (ReprT(1) << ReprT(TruncBits)) - 1;

View File

@@ -6,6 +6,7 @@
//
//===----------------------------------------------------------------------===//
#include "InterpBuiltinBitCast.h"
#include "BitcastBuffer.h"
#include "Boolean.h"
#include "Context.h"
#include "Floating.h"
@@ -21,9 +22,19 @@
using namespace clang;
using namespace clang::interp;
/// Implement __builtin_bit_cast and related operations.
/// Since our internal representation for data is more complex than
/// something we can simply memcpy or memcmp, we first bitcast all the data
/// into a buffer, which we then later use to copy the data into the target.
// TODO:
// - Try to minimize heap allocations.
// - Optimize the common case of only pushing and pulling full
// bytes to/from the buffer.
/// Used to iterate over pointer fields.
using DataFunc = llvm::function_ref<bool(const Pointer &P, PrimType Ty,
size_t BitOffset, bool PackedBools)>;
Bits BitOffset, bool PackedBools)>;
#define BITCAST_TYPE_SWITCH(Expr, B) \
do { \
@@ -61,156 +72,72 @@ using DataFunc = llvm::function_ref<bool(const Pointer &P, PrimType Ty,
} \
} while (0)
static bool bitof(std::byte B, unsigned BitIndex) {
return (B & (std::byte{1} << BitIndex)) != std::byte{0};
}
static void swapBytes(std::byte *M, size_t N) {
for (size_t I = 0; I != (N / 2); ++I)
std::swap(M[I], M[N - 1 - I]);
}
/// Track what bits have been initialized to known values and which ones
/// have indeterminate value.
/// All offsets are in bits.
struct BitcastBuffer {
size_t SizeInBits = 0;
llvm::SmallVector<std::byte> Data;
BitcastBuffer() = default;
size_t size() const { return SizeInBits; }
const std::byte *data() const { return Data.data(); }
std::byte *getBytes(unsigned BitOffset) const {
assert(BitOffset % 8 == 0);
assert(BitOffset < SizeInBits);
return const_cast<std::byte *>(data() + (BitOffset / 8));
}
bool allInitialized() const {
// FIXME: Implement.
return true;
}
bool atByteBoundary() const { return (Data.size() * 8) == SizeInBits; }
void pushBit(bool Value) {
if (atByteBoundary())
Data.push_back(std::byte{0});
if (Value)
Data.back() |= (std::byte{1} << (SizeInBits % 8));
++SizeInBits;
}
void pushData(const std::byte *data, size_t BitWidth, bool BigEndianTarget) {
bool OnlyFullBytes = BitWidth % 8 == 0;
unsigned NBytes = BitWidth / 8;
size_t BitsHandled = 0;
// Read all full bytes first
for (size_t I = 0; I != NBytes; ++I) {
std::byte B =
BigEndianTarget ? data[NBytes - OnlyFullBytes - I] : data[I];
for (unsigned X = 0; X != 8; ++X) {
pushBit(bitof(B, X));
++BitsHandled;
}
}
if (BitsHandled == BitWidth)
return;
// Rest of the bits.
assert((BitWidth - BitsHandled) < 8);
std::byte B = BigEndianTarget ? data[0] : data[NBytes];
for (size_t I = 0, E = (BitWidth - BitsHandled); I != E; ++I) {
pushBit(bitof(B, I));
++BitsHandled;
}
assert(BitsHandled == BitWidth);
}
};
/// We use this to recursively iterate over all fields and elemends of a pointer
/// We use this to recursively iterate over all fields and elements of a pointer
/// and extract relevant data for a bitcast.
static bool enumerateData(const Pointer &P, const Context &Ctx, size_t Offset,
DataFunc F) {
static bool enumerateData(const Pointer &P, const Context &Ctx, Bits Offset,
Bits BitsToRead, DataFunc F) {
const Descriptor *FieldDesc = P.getFieldDesc();
assert(FieldDesc);
// Primitives.
if (FieldDesc->isPrimitive())
return F(P, FieldDesc->getPrimType(), Offset, false);
return F(P, FieldDesc->getPrimType(), Offset, /*PackedBools=*/false);
// Primitive arrays.
if (FieldDesc->isPrimitiveArray()) {
bool BigEndianTarget = Ctx.getASTContext().getTargetInfo().isBigEndian();
QualType ElemType = FieldDesc->getElemQualType();
size_t ElemSizeInBits = Ctx.getASTContext().getTypeSize(ElemType);
PrimType ElemT = *Ctx.classify(ElemType);
// Special case, since the bools here are packed.
bool PackedBools = FieldDesc->getType()->isExtVectorBoolType();
unsigned NumElems = FieldDesc->getNumElems();
bool Ok = true;
for (unsigned I = 0; I != FieldDesc->getNumElems(); ++I) {
unsigned Index = BigEndianTarget ? (FieldDesc->getNumElems() - 1 - I) : I;
Ok = Ok && F(P.atIndex(Index), ElemT, Offset, PackedBools);
Offset += ElemSizeInBits;
for (unsigned I = P.getIndex(); I != NumElems; ++I) {
Ok = Ok && F(P.atIndex(I), ElemT, Offset, PackedBools);
Offset += PackedBools ? 1 : ElemSizeInBits;
if (Offset >= BitsToRead)
break;
}
return Ok;
}
// Composite arrays.
if (FieldDesc->isCompositeArray()) {
bool BigEndianTarget = Ctx.getASTContext().getTargetInfo().isBigEndian();
QualType ElemType = FieldDesc->getElemQualType();
size_t ElemSizeInBits = Ctx.getASTContext().getTypeSize(ElemType);
for (unsigned I = 0; I != FieldDesc->getNumElems(); ++I) {
unsigned Index = BigEndianTarget ? (FieldDesc->getNumElems() - 1 - I) : I;
enumerateData(P.atIndex(Index).narrow(), Ctx, Offset, F);
enumerateData(P.atIndex(I).narrow(), Ctx, Offset, BitsToRead, F);
Offset += ElemSizeInBits;
if (Offset >= BitsToRead)
break;
}
return true;
}
// Records.
if (FieldDesc->isRecord()) {
bool BigEndianTarget = Ctx.getASTContext().getTargetInfo().isBigEndian();
const Record *R = FieldDesc->ElemRecord;
const ASTRecordLayout &Layout =
Ctx.getASTContext().getASTRecordLayout(R->getDecl());
bool Ok = true;
auto enumerateFields = [&]() -> void {
for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
const Record::Field *Fi =
R->getField(BigEndianTarget ? (N - 1 - I) : I);
Pointer Elem = P.atField(Fi->Offset);
size_t BitOffset =
Offset + Layout.getFieldOffset(Fi->Decl->getFieldIndex());
Ok = Ok && enumerateData(Elem, Ctx, BitOffset, F);
}
};
auto enumerateBases = [&]() -> void {
for (unsigned I = 0, N = R->getNumBases(); I != N; ++I) {
const Record::Base *B = R->getBase(BigEndianTarget ? (N - 1 - I) : I);
Pointer Elem = P.atField(B->Offset);
CharUnits ByteOffset =
Layout.getBaseClassOffset(cast<CXXRecordDecl>(B->Decl));
size_t BitOffset = Offset + Ctx.getASTContext().toBits(ByteOffset);
Ok = Ok && enumerateData(Elem, Ctx, BitOffset, F);
}
};
if (BigEndianTarget) {
enumerateFields();
enumerateBases();
} else {
enumerateBases();
enumerateFields();
for (const Record::Field &Fi : R->fields()) {
Pointer Elem = P.atField(Fi.Offset);
Bits BitOffset =
Offset + Bits(Layout.getFieldOffset(Fi.Decl->getFieldIndex()));
Ok = Ok && enumerateData(Elem, Ctx, BitOffset, BitsToRead, F);
}
for (const Record::Base &B : R->bases()) {
Pointer Elem = P.atField(B.Offset);
CharUnits ByteOffset =
Layout.getBaseClassOffset(cast<CXXRecordDecl>(B.Decl));
Bits BitOffset = Offset + Bits(Ctx.getASTContext().toBits(ByteOffset));
Ok = Ok && enumerateData(Elem, Ctx, BitOffset, BitsToRead, F);
}
return Ok;
@@ -220,8 +147,8 @@ static bool enumerateData(const Pointer &P, const Context &Ctx, size_t Offset,
}
static bool enumeratePointerFields(const Pointer &P, const Context &Ctx,
DataFunc F) {
return enumerateData(P, Ctx, 0, F);
Bits BitsToRead, DataFunc F) {
return enumerateData(P, Ctx, Bits::zero(), BitsToRead, F);
}
// This function is constexpr if and only if To, From, and the types of
@@ -295,62 +222,57 @@ static bool CheckBitcastType(InterpState &S, CodePtr OpPC, QualType T,
static bool readPointerToBuffer(const Context &Ctx, const Pointer &FromPtr,
BitcastBuffer &Buffer, bool ReturnOnUninit) {
const ASTContext &ASTCtx = Ctx.getASTContext();
bool SwapData = (ASTCtx.getTargetInfo().isLittleEndian() !=
llvm::sys::IsLittleEndianHost);
bool BigEndianTarget = ASTCtx.getTargetInfo().isBigEndian();
Endian TargetEndianness =
ASTCtx.getTargetInfo().isLittleEndian() ? Endian::Little : Endian::Big;
return enumeratePointerFields(
FromPtr, Ctx,
[&](const Pointer &P, PrimType T, size_t BitOffset,
FromPtr, Ctx, Buffer.size(),
[&](const Pointer &P, PrimType T, Bits BitOffset,
bool PackedBools) -> bool {
if (!P.isInitialized()) {
assert(false && "Implement uninitialized value tracking");
return ReturnOnUninit;
}
// if (!P.isInitialized()) {
// assert(false && "Implement uninitialized value tracking");
// return ReturnOnUninit;
// }
assert(P.isInitialized());
// assert(P.isInitialized());
// nullptr_t is a PT_Ptr for us, but it's still not std::is_pointer_v.
if (T == PT_Ptr)
assert(false && "Implement casting to pointer types");
CharUnits ObjectReprChars = ASTCtx.getTypeSizeInChars(P.getType());
unsigned BitWidth = ASTCtx.toBits(ObjectReprChars);
llvm::SmallVector<std::byte> Buff(ObjectReprChars.getQuantity());
Bits BitWidth = Bits(ASTCtx.toBits(ObjectReprChars));
Bits FullBitWidth = BitWidth;
auto Buff =
std::make_unique<std::byte[]>(ObjectReprChars.getQuantity());
// Work around floating point types that contain unused padding bytes.
// This is really just `long double` on x86, which is the only
// fundamental type with padding bytes.
if (T == PT_Float) {
const Floating &F = P.deref<Floating>();
unsigned NumBits =
llvm::APFloatBase::getSizeInBits(F.getAPFloat().getSemantics());
assert(NumBits % 8 == 0);
assert(NumBits <= (ObjectReprChars.getQuantity() * 8));
F.bitcastToMemory(Buff.data());
Bits NumBits = Bits(
llvm::APFloatBase::getSizeInBits(F.getAPFloat().getSemantics()));
assert(NumBits.isFullByte());
assert(NumBits.getQuantity() <= FullBitWidth.getQuantity());
F.bitcastToMemory(Buff.get());
// Now, only (maybe) swap the actual size of the float, excluding the
// padding bits.
if (SwapData)
swapBytes(Buff.data(), NumBits / 8);
if (llvm::sys::IsBigEndianHost)
swapBytes(Buff.get(), NumBits.roundToBytes());
} else {
if (const FieldDecl *FD = P.getField(); FD && FD->isBitField())
BitWidth = FD->getBitWidthValue(ASTCtx);
BitWidth = Bits(std::min(FD->getBitWidthValue(ASTCtx),
(unsigned)FullBitWidth.getQuantity()));
else if (T == PT_Bool && PackedBools)
BitWidth = 1;
BitWidth = Bits(1);
BITCAST_TYPE_SWITCH(T, {
T Val = P.deref<T>();
Val.bitcastToMemory(Buff.data());
});
if (SwapData)
swapBytes(Buff.data(), ObjectReprChars.getQuantity());
BITCAST_TYPE_SWITCH(T, { P.deref<T>().bitcastToMemory(Buff.get()); });
if (llvm::sys::IsBigEndianHost)
swapBytes(Buff.get(), FullBitWidth.roundToBytes());
}
if (BitWidth != (Buff.size() * 8) && BigEndianTarget) {
Buffer.pushData(Buff.data() + (Buff.size() - 1 - (BitWidth / 8)),
BitWidth, BigEndianTarget);
} else {
Buffer.pushData(Buff.data(), BitWidth, BigEndianTarget);
}
Buffer.pushData(Buff.get(), BitOffset, BitWidth, TargetEndianness);
return true;
});
}
@@ -362,16 +284,21 @@ bool clang::interp::DoBitCast(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
assert(Ptr.isBlockPointer());
assert(Buff);
BitcastBuffer Buffer;
Bits BitSize = Bytes(BuffSize).toBits();
BitcastBuffer Buffer(BitSize);
if (!CheckBitcastType(S, OpPC, Ptr.getType(), /*IsToType=*/false))
return false;
bool Success = readPointerToBuffer(S.getContext(), Ptr, Buffer,
/*ReturnOnUninit=*/false);
assert(Buffer.size() == BuffSize * 8);
HasIndeterminateBits = !Buffer.allInitialized();
std::memcpy(Buff, Buffer.data(), BuffSize);
const ASTContext &ASTCtx = S.getASTContext();
Endian TargetEndianness =
ASTCtx.getTargetInfo().isLittleEndian() ? Endian::Little : Endian::Big;
auto B = Buffer.copyBits(Bits::zero(), BitSize, BitSize, TargetEndianness);
std::memcpy(Buff, B.get(), BuffSize);
if (llvm::sys::IsBigEndianHost)
swapBytes(Buff, BuffSize);
@@ -393,43 +320,60 @@ bool clang::interp::DoBitCastPtr(InterpState &S, CodePtr OpPC,
if (!CheckBitcastType(S, OpPC, FromType, /*IsToType=*/false))
return false;
BitcastBuffer Buffer;
const ASTContext &ASTCtx = S.getASTContext();
CharUnits ObjectReprChars = ASTCtx.getTypeSizeInChars(ToType);
BitcastBuffer Buffer(Bits(ASTCtx.toBits(ObjectReprChars)));
readPointerToBuffer(S.getContext(), FromPtr, Buffer,
/*ReturnOnUninit=*/false);
// Now read the values out of the buffer again and into ToPtr.
const ASTContext &ASTCtx = S.getASTContext();
size_t BitOffset = 0;
Endian TargetEndianness =
ASTCtx.getTargetInfo().isLittleEndian() ? Endian::Little : Endian::Big;
bool Success = enumeratePointerFields(
ToPtr, S.getContext(),
[&](const Pointer &P, PrimType T, size_t _, bool PackedBools) -> bool {
ToPtr, S.getContext(), Buffer.size(),
[&](const Pointer &P, PrimType T, Bits BitOffset,
bool PackedBools) -> bool {
CharUnits ObjectReprChars = ASTCtx.getTypeSizeInChars(P.getType());
Bits FullBitWidth = Bits(ASTCtx.toBits(ObjectReprChars));
if (T == PT_Float) {
CharUnits ObjectReprChars = ASTCtx.getTypeSizeInChars(P.getType());
const auto &Semantics = ASTCtx.getFloatTypeSemantics(P.getType());
unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics);
assert(NumBits % 8 == 0);
assert(NumBits <= ASTCtx.toBits(ObjectReprChars));
std::byte *M = Buffer.getBytes(BitOffset);
Bits NumBits = Bits(llvm::APFloatBase::getSizeInBits(Semantics));
assert(NumBits.isFullByte());
assert(NumBits.getQuantity() <= FullBitWidth.getQuantity());
auto M = Buffer.copyBits(BitOffset, NumBits, FullBitWidth,
TargetEndianness);
if (llvm::sys::IsBigEndianHost)
swapBytes(M, NumBits / 8);
swapBytes(M.get(), NumBits.roundToBytes());
P.deref<Floating>() = Floating::bitcastFromMemory(M, Semantics);
P.deref<Floating>() = Floating::bitcastFromMemory(M.get(), Semantics);
P.initialize();
BitOffset += ASTCtx.toBits(ObjectReprChars);
return true;
}
Bits BitWidth;
if (const FieldDecl *FD = P.getField(); FD && FD->isBitField())
BitWidth = Bits(std::min(FD->getBitWidthValue(ASTCtx),
(unsigned)FullBitWidth.getQuantity()));
else if (T == PT_Bool && PackedBools)
BitWidth = Bits(1);
else
BitWidth = FullBitWidth;
auto Memory = Buffer.copyBits(BitOffset, BitWidth, FullBitWidth,
TargetEndianness);
if (llvm::sys::IsBigEndianHost)
swapBytes(Memory.get(), FullBitWidth.roundToBytes());
BITCAST_TYPE_SWITCH_FIXED_SIZE(T, {
std::byte *M = Buffer.getBytes(BitOffset);
if (llvm::sys::IsBigEndianHost)
swapBytes(M, T::bitWidth() / 8);
P.deref<T>() = T::bitcastFromMemory(M, T::bitWidth());
P.initialize();
BitOffset += T::bitWidth();
if (BitWidth.nonZero())
P.deref<T>() = T::bitcastFromMemory(Memory.get(), T::bitWidth())
.truncate(BitWidth.getQuantity());
else
P.deref<T>() = T::zero();
});
P.initialize();
return true;
});

View File

@@ -65,6 +65,7 @@ add_clang_library(clangAST
ExternalASTSource.cpp
FormatString.cpp
InheritViz.cpp
ByteCode/BitcastBuffer.cpp
ByteCode/ByteCodeEmitter.cpp
ByteCode/Compiler.cpp
ByteCode/Context.cpp

View File

@@ -0,0 +1,441 @@
// RUN: %clang_cc1 -verify=expected,both -std=c++2a -fsyntax-only -fexperimental-new-constant-interpreter %s
// RUN: %clang_cc1 -verify=expected,both -std=c++2a -fsyntax-only -triple armv8 -fexperimental-new-constant-interpreter %s
// RUN: %clang_cc1 -verify=expected,both -std=c++2a -fsyntax-only -triple aarch64_be-linux-gnu -fexperimental-new-constant-interpreter %s
// RUN: %clang_cc1 -verify=expected,both -std=c++2a -fsyntax-only -fexperimental-new-constant-interpreter -triple powerpc64le-unknown-unknown -mabi=ieeelongdouble %s
// RUN: %clang_cc1 -verify=expected,both -std=c++2a -fsyntax-only -fexperimental-new-constant-interpreter -triple powerpc64-unknown-unknown -mabi=ieeelongdouble %s
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
# define LITTLE_END 1
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
# define LITTLE_END 0
#else
# error "huh?"
#endif
typedef decltype(nullptr) nullptr_t;
typedef __INTPTR_TYPE__ intptr_t;
typedef unsigned __INT16_TYPE__ uint16_t;
typedef unsigned __INT32_TYPE__ uint32_t;
typedef unsigned __INT64_TYPE__ uint64_t;
static_assert(sizeof(int) == 4);
static_assert(sizeof(long long) == 8);
template <class To, class From>
constexpr To bit_cast(const From &from) {
static_assert(sizeof(To) == sizeof(From));
return __builtin_bit_cast(To, from);
}
template <class Intermediate, class Init>
constexpr bool check_round_trip(const Init &init) {
return bit_cast<Init>(bit_cast<Intermediate>(init)) == init;
}
template <class Intermediate, class Init>
constexpr Init round_trip(const Init &init) {
return bit_cast<Init>(bit_cast<Intermediate>(init));
}
namespace std {
enum byte : unsigned char {};
} // namespace std
template <int N, typename T = unsigned char, int Pad = 0>
struct bits {
T : Pad;
T bits : N;
constexpr bool operator==(const T& rhs) const {
return bits == rhs;
}
};
template <int N, typename T, int P>
constexpr bool operator==(const struct bits<N, T, P>& lhs, const struct bits<N, T, P>& rhs) {
return lhs.bits == rhs.bits;
}
template<int N>
struct bytes {
using size_t = unsigned int;
unsigned char d[N];
constexpr unsigned char operator[](size_t index) {
if (index < N)
return d[index];
return -1;
}
};
namespace Sanity {
/// This is just one byte, and we extract 2 bits from it.
///
/// 3 is 0000'0011.
/// For both LE and BE, the buffer will contain exactly that
/// byte, unaltered and not reordered in any way. It contains all 8 bits.
static_assert(__builtin_bit_cast(bits<2>, (unsigned char)3) == (LITTLE_END ? 3 : 0));
/// Similarly, we have one full byte of data, with the two most-significant
/// bits set:
/// 192 is 1100'0000
static_assert(__builtin_bit_cast(bits<2>, (unsigned char)192) == (LITTLE_END ? 0 : 3));
/// Here we are instead bitcasting two 1-bits into a destination of 8 bits.
/// On LE, we should pick the two least-significant bits. On BE, the opposite.
/// NOTE: Can't verify this with gcc.
constexpr auto B1 = bits<2>{3};
static_assert(__builtin_bit_cast(unsigned char, B1) == (LITTLE_END ? 3 : 192));
/// This should be 0000'0110.
/// On LE, this should result in 6.
/// On BE, 1100'0000 = 192.
constexpr auto B2 = bits<3>{6};
static_assert(__builtin_bit_cast(unsigned char, B2) == (LITTLE_END ? 6 : 192));
constexpr auto B3 = bits<4>{6};
static_assert(__builtin_bit_cast(unsigned char, B3) == (LITTLE_END ? 6 : 96));
struct B {
std::byte b0 : 4;
std::byte b1 : 4;
};
/// We can properly decompose one byte (8 bit) int two 4-bit bitfields.
constexpr struct { unsigned char b0; } T = {0xee};
constexpr B MB = __builtin_bit_cast(B, T);
static_assert(MB.b0 == 0xe);
static_assert(MB.b1 == 0xe);
}
namespace BitFields {
struct BitFields {
unsigned a : 2;
unsigned b : 30;
};
constexpr unsigned A = __builtin_bit_cast(unsigned, BitFields{3, 16});
static_assert(A == (LITTLE_END ? 67 : 3221225488));
struct S {
unsigned a : 2;
unsigned b : 28;
unsigned c : 2;
};
constexpr S s = __builtin_bit_cast(S, 0xFFFFFFFF);
static_assert(s.a == 3);
static_assert(s.b == 268435455);
static_assert(s.c == 3);
void bitfield_indeterminate() {
struct BF { unsigned char z : 2; };
enum byte : unsigned char {};
constexpr BF bf = {0x3};
/// Requires bitcasts to composite types.
static_assert(bit_cast<bits<2>>(bf).bits == bf.z);
static_assert(bit_cast<unsigned char>(bf));
static_assert(__builtin_bit_cast(byte, bf));
struct M {
// ref-note@+1 {{subobject declared here}}
unsigned char mem[sizeof(BF)];
};
// ref-error@+2 {{initialized by a constant expression}}
// ref-note@+1 {{not initialized}}
constexpr M m = bit_cast<M>(bf);
constexpr auto f = []() constexpr {
// bits<24, unsigned int, LITTLE_END ? 0 : 8> B = {0xc0ffee};
constexpr struct { unsigned short b1; unsigned char b0; } B = {0xc0ff, 0xee};
return bit_cast<bytes<4>>(B);
};
static_assert(f()[0] + f()[1] + f()[2] == 0xc0 + 0xff + 0xee);
{
// ref-error@+2 {{initialized by a constant expression}}
// ref-note@+1 {{read of uninitialized object is not allowed in a constant expression}}
constexpr auto _bad = f()[3];
}
struct B {
unsigned short s0 : 8;
unsigned short s1 : 8;
std::byte b0 : 4;
std::byte b1 : 4;
std::byte b2 : 4;
};
constexpr auto g = [f]() constexpr {
return bit_cast<B>(f());
};
static_assert(g().s0 + g().s1 + g().b0 + g().b1 == 0xc0 + 0xff + 0xe + 0xe);
{
// ref-error@+2 {{initialized by a constant expression}}
// ref-note@+1 {{read of uninitialized object is not allowed in a constant expression}}
constexpr auto _bad = g().b2;
}
}
}
namespace BoolVectors {
typedef bool bool32 __attribute__((ext_vector_type(32)));
constexpr auto v = bit_cast<bool32>(0xa1c0ffee);
#if LITTLE_END
static_assert(!v[0]);
static_assert(v[1]);
static_assert(v[2]);
static_assert(v[3]);
static_assert(!v[4]);
static_assert(v[5]);
static_assert(v[6]);
static_assert(v[7]);
static_assert(v[8]);
static_assert(v[9]);
static_assert(v[10]);
static_assert(v[11]);
static_assert(v[12]);
static_assert(v[13]);
static_assert(v[14]);
static_assert(v[15]);
static_assert(!v[16]);
static_assert(!v[17]);
static_assert(!v[18]);
static_assert(!v[19]);
static_assert(!v[20]);
static_assert(!v[21]);
static_assert(v[22]);
static_assert(v[23]);
static_assert(v[24]);
static_assert(!v[25]);
static_assert(!v[26]);
static_assert(!v[27]);
static_assert(!v[28]);
static_assert(v[29]);
static_assert(!v[30]);
static_assert(v[31]);
#else
static_assert(v[0]);
static_assert(!v[1]);
static_assert(v[2]);
static_assert(!v[3]);
static_assert(!v[4]);
static_assert(!v[5]);
static_assert(!v[6]);
static_assert(v[7]);
static_assert(v[8]);
static_assert(v[9]);
static_assert(!v[10]);
static_assert(!v[11]);
static_assert(!v[12]);
static_assert(!v[13]);
static_assert(!v[14]);
static_assert(!v[15]);
static_assert(v[16]);
static_assert(v[17]);
static_assert(v[18]);
static_assert(v[19]);
static_assert(v[20]);
static_assert(v[21]);
static_assert(v[22]);
static_assert(v[23]);
static_assert(v[24]);
static_assert(v[25]);
static_assert(v[26]);
static_assert(!v[27]);
static_assert(v[28]);
static_assert(v[29]);
static_assert(v[30]);
static_assert(!v[31]);
#endif
struct pad {
unsigned short s;
unsigned char c;
};
constexpr auto p = bit_cast<pad>(v);
static_assert(p.s == (LITTLE_END ? 0xffee : 0xa1c0));
static_assert(p.c == (LITTLE_END ? 0xc0 : 0xff));
}
namespace TwoShorts {
struct B {
unsigned short s0 : 8;
unsigned short s1 : 8;
};
constexpr struct { unsigned short b1;} T = {0xc0ff};
constexpr B MB = __builtin_bit_cast(B, T);
#if LITTLE_END
static_assert(MB.s0 == 0xff);
static_assert(MB.s1 == 0xc0);
#else
static_assert(MB.s0 == 0xc0);
static_assert(MB.s1 == 0xff);
#endif
}
typedef bool bool8 __attribute__((ext_vector_type(8)));
typedef bool bool9 __attribute__((ext_vector_type(9)));
typedef bool bool16 __attribute__((ext_vector_type(16)));
typedef bool bool17 __attribute__((ext_vector_type(17)));
typedef bool bool32 __attribute__((ext_vector_type(32)));
typedef bool bool128 __attribute__((ext_vector_type(128)));
static_assert(bit_cast<unsigned char>(bool8{1,0,1,0,1,0,1,0}) == (LITTLE_END ? 0x55 : 0xAA), "");
constexpr bool8 b8 = __builtin_bit_cast(bool8, 0x55); // both-error {{'__builtin_bit_cast' source type 'int' does not match destination type 'bool8' (vector of 8 'bool' values) (4 vs 1 bytes)}}
static_assert(check_round_trip<bool8>(static_cast<unsigned char>(0)), "");
static_assert(check_round_trip<bool8>(static_cast<unsigned char>(1)), "");
static_assert(check_round_trip<bool8>(static_cast<unsigned char>(0x55)), "");
static_assert(bit_cast<unsigned short>(bool16{1,1,1,1,1,0,0,0, 1,1,1,1,0,1,0,0}) == (LITTLE_END ? 0x2F1F : 0xF8F4), "");
static_assert(check_round_trip<bool16>(static_cast<short>(0xCAFE)), "");
static_assert(check_round_trip<bool32>(static_cast<int>(0xCAFEBABE)), "");
#ifdef __SIZEOF_INT128__
static_assert(check_round_trip<bool128>(static_cast<__int128_t>(0xCAFEBABE0C05FEFEULL)), "");
#endif
static_assert(bit_cast<bits<8, uint16_t, 7>, uint16_t>(0xcafe) == (LITTLE_END ? 0x95 : 0x7f));
static_assert(bit_cast<bits<4, uint16_t, 10>, uint16_t>(0xcafe) == (LITTLE_END ? 0x2 : 0xf));
static_assert(bit_cast<bits<4, uint32_t, 19>, uint32_t>(0xa1cafe) == (LITTLE_END ? 0x4 : 0x5));
struct S {
// little endian:
// MSB .... .... LSB
// |y| |x|
//
// big endian
// MSB .... .... LSB
// |x| |y|
unsigned char x : 4;
unsigned char y : 4;
constexpr bool operator==(S const &other) const {
return x == other.x && y == other.y;
}
};
constexpr S s{0xa, 0xb};
static_assert(bit_cast<bits<8>>(s) == (LITTLE_END ? 0xba : 0xab));
static_assert(bit_cast<bits<7>>(s) == (LITTLE_END
? 0xba & 0x7f
: (0xab & 0xfe) >> 1));
static_assert(round_trip<bits<8>>(s) == s);
struct R {
unsigned int r : 31;
unsigned int : 0;
unsigned int : 32;
constexpr bool operator==(R const &other) const {
return r == other.r;
}
};
using T = bits<31, signed long long>;
constexpr R r{0x4ac0ffee};
constexpr T t = bit_cast<T>(r);
static_assert(t == ((0xFFFFFFFF8 << 28) | 0x4ac0ffee)); // sign extension
static_assert(round_trip<T>(r) == r);
static_assert(round_trip<R>(t) == t);
/// The oversized bitfield is an error on Windows and not just a warning.
#if !defined(_WIN32)
struct U {
// expected-warning@+1 {{exceeds the width of its type}}
uint32_t trunc : 33;
uint32_t u : 31;
constexpr bool operator==(U const &other) const {
return trunc == other.trunc && u == other.u;
}
};
struct V {
uint64_t notrunc : 32;
uint64_t : 1;
uint64_t v : 31;
constexpr bool operator==(V const &other) const {
return notrunc == other.notrunc && v == other.v;
}
};
constexpr U u{static_cast<unsigned int>(~0), 0x4ac0ffee};
constexpr V v = bit_cast<V>(u);
static_assert(v.v == 0x4ac0ffee);
static_assert(round_trip<V>(u) == u);
static_assert(round_trip<U>(v) == v);
constexpr auto w = bit_cast<bits<12, unsigned long, 33>>(u);
static_assert(w == (LITTLE_END
? 0x4ac0ffee & 0xFFF
: (0x4ac0ffee & (0xFFF << (31 - 12))) >> (31-12)
));
#endif
namespace NestedStructures {
struct J {
struct {
uint16_t k : 12;
} K;
struct {
uint16_t l : 4;
} L;
};
static_assert(sizeof(J) == 4);
constexpr J j = bit_cast<J>(0x8c0ffee5);
static_assert(j.K.k == (LITTLE_END ? 0xee5 : 0x8c0));
static_assert(j.L.l == 0xf /* yay symmetry */);
static_assert(bit_cast<bits<4, uint16_t, 16>>(j) == 0xf);
struct N {
bits<12, uint16_t> k;
uint16_t : 16;
};
static_assert(bit_cast<N>(j).k == j.K.k);
struct M {
bits<4, uint16_t, 0> m[2];
constexpr bool operator==(const M& rhs) const {
return m[0] == rhs.m[0] && m[1] == rhs.m[1];
};
};
#if LITTLE_END == 1
constexpr uint16_t want[2] = {0x5, 0xf};
#else
constexpr uint16_t want[2] = {0x8000, 0xf000};
#endif
static_assert(bit_cast<M>(j) == bit_cast<M>(want));
}
namespace Enums {
// ensure we're packed into the top 2 bits
constexpr int pad = LITTLE_END ? 6 : 0;
struct X
{
char : pad;
enum class direction: char { left, right, up, down } direction : 2;
};
constexpr X x = { X::direction::down };
static_assert(bit_cast<bits<2, signed char, pad>>(x) == -1);
static_assert(bit_cast<bits<2, unsigned char, pad>>(x) == 3);
static_assert(
bit_cast<X>((unsigned char)0x40).direction == X::direction::right);
}

View File

@@ -186,72 +186,6 @@ namespace bitint {
// ref-note {{initializer of 'IB' is not a constant expression}}
}
namespace BitFields {
struct BitFields {
unsigned a : 2;
unsigned b : 30;
};
constexpr unsigned A = __builtin_bit_cast(unsigned, BitFields{3, 16}); // ref-error {{must be initialized by a constant expression}} \
// ref-note {{not yet supported}} \
// ref-note {{declared here}}
static_assert(A == (LITTLE_END ? 67 : 3221225488)); // ref-error {{not an integral constant expression}} \
// ref-note {{initializer of 'A'}}
void bitfield_indeterminate() {
struct BF { unsigned char z : 2; };
enum byte : unsigned char {};
constexpr BF bf = {0x3};
/// Requires bitcasts to composite types.
// static_assert(bit_cast<bits<2>>(bf).bits == bf.z);
// static_assert(bit_cast<unsigned char>(bf));
#if 0
// static_assert(__builtin_bit_cast(byte, bf));
struct M {
// expected-note@+1 {{subobject declared here}}
unsigned char mem[sizeof(BF)];
};
// expected-error@+2 {{initialized by a constant expression}}
// expected-note@+1 {{not initialized}}
constexpr M m = bit_cast<M>(bf);
constexpr auto f = []() constexpr {
// bits<24, unsigned int, LITTLE_END ? 0 : 8> B = {0xc0ffee};
constexpr struct { unsigned short b1; unsigned char b0; } B = {0xc0ff, 0xee};
return bit_cast<bytes<4>>(B);
};
static_assert(f()[0] + f()[1] + f()[2] == 0xc0 + 0xff + 0xee);
{
// expected-error@+2 {{initialized by a constant expression}}
// expected-note@+1 {{read of uninitialized object is not allowed in a constant expression}}
constexpr auto _bad = f()[3];
}
struct B {
unsigned short s0 : 8;
unsigned short s1 : 8;
std::byte b0 : 4;
std::byte b1 : 4;
std::byte b2 : 4;
};
constexpr auto g = [f]() constexpr {
return bit_cast<B>(f());
};
static_assert(g().s0 + g().s1 + g().b0 + g().b1 == 0xc0 + 0xff + 0xe + 0xe);
{
// expected-error@+2 {{initialized by a constant expression}}
// expected-note@+1 {{read of uninitialized object is not allowed in a constant expression}}
constexpr auto _bad = g().b2;
}
#endif
}
}
namespace Classes {
class A {
public:
@@ -331,6 +265,21 @@ static_assert(check_round_trip<long long>(splice));
#endif
namespace Overread {
/// This used to crash becaus we were reading all elements of the
/// source array even though we should only be reading 1.
constexpr int a[] = {2,3, 4, 5};
constexpr int b = __builtin_bit_cast(int, *(a + 1));
static_assert(b == 3);
struct S {
int a;
};
constexpr S ss[] = {{1},{2}};
constexpr int c = __builtin_bit_cast(int, *(ss + 1));
static_assert(c == 2);
}
/// ---------------------------------------------------------------------------
/// From here on, it's things copied from test/SemaCXX/constexpr-builtin-bit.cast.cpp
@@ -510,27 +459,6 @@ static_assert(bit_cast<unsigned long long>(test_vector) == (LITTLE_END
static_assert(check_round_trip<uint2>(0xCAFEBABE0C05FEFEULL), "");
static_assert(check_round_trip<byte8>(0xCAFEBABE0C05FEFEULL), "");
typedef bool bool8 __attribute__((ext_vector_type(8)));
typedef bool bool9 __attribute__((ext_vector_type(9)));
typedef bool bool16 __attribute__((ext_vector_type(16)));
typedef bool bool17 __attribute__((ext_vector_type(17)));
typedef bool bool32 __attribute__((ext_vector_type(32)));
typedef bool bool128 __attribute__((ext_vector_type(128)));
static_assert(bit_cast<unsigned char>(bool8{1,0,1,0,1,0,1,0}) == (LITTLE_END ? 0x55 : 0xAA), "");
constexpr bool8 b8 = __builtin_bit_cast(bool8, 0x55); // both-error {{'__builtin_bit_cast' source type 'int' does not match destination type 'bool8' (vector of 8 'bool' values) (4 vs 1 bytes)}}
#if 0
static_assert(check_round_trip<bool8>(static_cast<unsigned char>(0)), "");
static_assert(check_round_trip<bool8>(static_cast<unsigned char>(1)), "");
static_assert(check_round_trip<bool8>(static_cast<unsigned char>(0x55)), "");
static_assert(bit_cast<unsigned short>(bool16{1,1,1,1,1,0,0,0, 1,1,1,1,0,1,0,0}) == (LITTLE_END ? 0x2F1F : 0xF8F4), "");
static_assert(check_round_trip<bool16>(static_cast<short>(0xCAFE)), "");
static_assert(check_round_trip<bool32>(static_cast<int>(0xCAFEBABE)), "");
static_assert(check_round_trip<bool128>(static_cast<__int128_t>(0xCAFEBABE0C05FEFEULL)), "");
#endif
#if 0
// expected-error@+2 {{constexpr variable 'bad_bool9_to_short' must be initialized by a constant expression}}
// expected-note@+1 {{bit_cast involving type 'bool __attribute__((ext_vector_type(9)))' (vector of 9 'bool' values) is not allowed in a constant expression; element size 1 * element count 9 is not a multiple of the byte size 8}}
@@ -559,3 +487,20 @@ namespace test_complex {
constexpr double D = __builtin_bit_cast(double, test_float_complex);
constexpr int M = __builtin_bit_cast(int, test_int_complex); // both-error {{size of '__builtin_bit_cast' source type 'const _Complex unsigned int' does not match destination type 'int' (8 vs 4 bytes)}}
}
namespace OversizedBitField {
#if defined(_WIN32)
/// This is an error (not just a warning) on Windows and the field ends up with a size of 1 instead of 4.
#else
typedef unsigned __INT16_TYPE__ uint16_t;
typedef unsigned __INT32_TYPE__ uint32_t;
struct S {
uint16_t a : 20; // both-warning {{exceeds the width of its type}}
};
static_assert(sizeof(S) == 4);
static_assert(__builtin_bit_cast(S, (uint32_t)32).a == (LITTLE_END ? 32 : 0)); // ref-error {{not an integral constant expression}} \
// ref-note {{constexpr bit_cast involving bit-field is not yet supported}}
#endif
}

View File

@@ -0,0 +1,87 @@
#include "../../../lib/AST/ByteCode/BitcastBuffer.h"
#include "clang/AST/ASTContext.h"
#include "gtest/gtest.h"
#include <bitset>
#include <cassert>
#include <cmath>
#include <memory>
#include <string>
using namespace clang;
using namespace clang::interp;
TEST(BitcastBuffer, PushData) {
BitcastBuffer Buff1(Bytes(sizeof(int)).toBits());
const unsigned V = 0xCAFEBABE;
Bits VSize = Bytes(sizeof(V)).toBits();
std::byte Data[sizeof(V)];
std::memcpy(Data, &V, sizeof(V));
Endian HostEndianness =
llvm::sys::IsLittleEndianHost ? Endian::Little : Endian::Big;
Buff1.pushData(Data, Bits::zero(), VSize, HostEndianness);
// The buffer is in host-endianness.
if (llvm::sys::IsLittleEndianHost) {
ASSERT_EQ(Buff1.Data[0], std::byte{0xbe});
ASSERT_EQ(Buff1.Data[1], std::byte{0xba});
ASSERT_EQ(Buff1.Data[2], std::byte{0xfe});
ASSERT_EQ(Buff1.Data[3], std::byte{0xca});
} else {
ASSERT_EQ(Buff1.Data[0], std::byte{0xca});
ASSERT_EQ(Buff1.Data[1], std::byte{0xfe});
ASSERT_EQ(Buff1.Data[2], std::byte{0xba});
ASSERT_EQ(Buff1.Data[3], std::byte{0xbe});
}
{
unsigned V2;
auto D = Buff1.copyBits(Bits::zero(), VSize, VSize, Endian::Little);
std::memcpy(&V2, D.get(), sizeof(V));
ASSERT_EQ(V, V2);
D = Buff1.copyBits(Bits::zero(), VSize, VSize, Endian::Big);
std::memcpy(&V2, D.get(), sizeof(V));
ASSERT_EQ(V, V2);
}
BitcastBuffer Buff2(Bytes(sizeof(int)).toBits());
{
short s1 = 0xCAFE;
short s2 = 0xBABE;
std::byte sdata[2];
std::memcpy(sdata, &s1, sizeof(s1));
Buff2.pushData(sdata, Bits::zero(), Bits(sizeof(s1) * 8), HostEndianness);
std::memcpy(sdata, &s2, sizeof(s2));
Buff2.pushData(sdata, Bits(sizeof(s1) * 8), Bits(sizeof(s2) * 8),
HostEndianness);
}
if (llvm::sys::IsLittleEndianHost) {
ASSERT_EQ(Buff2.Data[0], std::byte{0xfe});
ASSERT_EQ(Buff2.Data[1], std::byte{0xca});
ASSERT_EQ(Buff2.Data[2], std::byte{0xbe});
ASSERT_EQ(Buff2.Data[3], std::byte{0xba});
} else {
ASSERT_EQ(Buff2.Data[0], std::byte{0xba});
ASSERT_EQ(Buff2.Data[1], std::byte{0xbe});
ASSERT_EQ(Buff2.Data[2], std::byte{0xca});
ASSERT_EQ(Buff2.Data[3], std::byte{0xfe});
}
{
unsigned V;
auto D = Buff2.copyBits(Bits::zero(), Bits(sizeof(V) * 8),
Bits(sizeof(V) * 8), Endian::Little);
std::memcpy(&V, D.get(), sizeof(V));
ASSERT_EQ(V, 0xBABECAFE);
D = Buff2.copyBits(Bits::zero(), Bits(sizeof(V) * 8), Bits(sizeof(V) * 8),
Endian::Big);
std::memcpy(&V, D.get(), sizeof(V));
ASSERT_EQ(V, 0xBABECAFE);
}
}

View File

@@ -1,4 +1,5 @@
add_clang_unittest(InterpTests
BitcastBuffer.cpp
Descriptor.cpp
toAPValue.cpp
)