Revert D123198 "[BuildLibCalls] Introduce getOrInsertLibFunc() for use when building libcalls."

test/Transforms/InstCombine/pr39177.ll failed in a -DLLVM_USE_SANITIZER=Undefined build.
```
lib/Transforms/Utils/BuildLibCalls.cpp:1217:17: runtime error: reference binding to null pointer of type 'llvm::Function'
```
`Function &F = *M->getFunction(Name);`

This reverts commit 0f8c626723.
This commit is contained in:
Fangrui Song
2022-04-19 22:26:09 -07:00
parent f493fe34bf
commit 14d9390721
9 changed files with 102 additions and 316 deletions

View File

@@ -363,8 +363,6 @@ public:
/// In all cases, the returned value is a FunctionCallee wrapper around the
/// 'FunctionType *T' passed in, as well as a 'Value*' either of the Function or
/// the bitcast to the function.
///
/// Note: For library calls getOrInsertLibFunc() should be used instead.
FunctionCallee getOrInsertFunction(StringRef Name, FunctionType *T,
AttributeList AttributeList);

View File

@@ -22,45 +22,12 @@ namespace llvm {
class IRBuilderBase;
/// Analyze the name and prototype of the given function and set any
/// applicable attributes. Note that this merely helps optimizations on an
/// already existing function but does not consider mandatory attributes.
///
/// applicable attributes.
/// If the library function is unavailable, this doesn't modify it.
///
/// Returns true if any attributes were set and false otherwise.
bool inferNonMandatoryLibFuncAttrs(Module *M, StringRef Name,
const TargetLibraryInfo &TLI);
bool inferNonMandatoryLibFuncAttrs(Function &F, const TargetLibraryInfo &TLI);
/// Calls getOrInsertFunction() and then makes sure to add mandatory
/// argument attributes.
FunctionCallee getOrInsertLibFunc(Module *M, const TargetLibraryInfo &TLI,
LibFunc TheLibFunc, FunctionType *T,
AttributeList AttributeList);
FunctionCallee getOrInsertLibFunc(Module *M, const TargetLibraryInfo &TLI,
LibFunc TheLibFunc, FunctionType *T);
template <typename... ArgsTy>
FunctionCallee getOrInsertLibFunc(Module *M, const TargetLibraryInfo &TLI,
LibFunc TheLibFunc, AttributeList AttributeList,
Type *RetTy, ArgsTy... Args) {
SmallVector<Type*, sizeof...(ArgsTy)> ArgTys{Args...};
return getOrInsertLibFunc(M, TLI, TheLibFunc,
FunctionType::get(RetTy, ArgTys, false),
AttributeList);
}
/// Same as above, but without the attributes.
template <typename... ArgsTy>
FunctionCallee getOrInsertLibFunc(Module *M, const TargetLibraryInfo &TLI,
LibFunc TheLibFunc, Type *RetTy, ArgsTy... Args) {
return getOrInsertLibFunc(M, TLI, TheLibFunc, AttributeList{}, RetTy,
Args...);
}
// Avoid an incorrect ordering that'd otherwise compile incorrectly.
template <typename... ArgsTy>
FunctionCallee
getOrInsertLibFunc(Module *M, const TargetLibraryInfo &TLI,
LibFunc TheLibFunc, AttributeList AttributeList,
FunctionType *Invalid, ArgsTy... Args) = delete;
bool inferLibFuncAttributes(Function &F, const TargetLibraryInfo &TLI);
bool inferLibFuncAttributes(Module *M, StringRef Name, const TargetLibraryInfo &TLI);
/// Check whether the overloaded floating point function
/// corresponding to \a Ty is available.
@@ -68,10 +35,10 @@ namespace llvm {
LibFunc DoubleFn, LibFunc FloatFn, LibFunc LongDoubleFn);
/// Get the name of the overloaded floating point function
/// corresponding to \a Ty. Return the LibFunc in \a TheLibFunc.
StringRef getFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
LibFunc DoubleFn, LibFunc FloatFn,
LibFunc LongDoubleFn, LibFunc &TheLibFunc);
/// corresponding to \a Ty.
StringRef getFloatFnName(const TargetLibraryInfo *TLI, Type *Ty,
LibFunc DoubleFn, LibFunc FloatFn,
LibFunc LongDoubleFn);
/// Return V if it is an i8*, otherwise cast it to i8*.
Value *castToCStr(Value *V, IRBuilderBase &B);
@@ -181,8 +148,7 @@ namespace llvm {
/// function is known to take a single of type matching 'Op' and returns one
/// value with the same type. If 'Op' is a long double, 'l' is added as the
/// suffix of name, if 'Op' is a float, we add a 'f' suffix.
Value *emitUnaryFloatFnCall(Value *Op, const TargetLibraryInfo *TLI,
StringRef Name, IRBuilderBase &B,
Value *emitUnaryFloatFnCall(Value *Op, StringRef Name, IRBuilderBase &B,
const AttributeList &Attrs);
/// Emit a call to the unary function DoubleFn, FloatFn or LongDoubleFn,
@@ -196,10 +162,8 @@ namespace llvm {
/// function is known to take type matching 'Op1' and 'Op2' and return one
/// value with the same type. If 'Op1/Op2' are long double, 'l' is added as
/// the suffix of name, if 'Op1/Op2' are float, we add a 'f' suffix.
Value *emitBinaryFloatFnCall(Value *Op1, Value *Op2,
const TargetLibraryInfo *TLI,
StringRef Name, IRBuilderBase &B,
const AttributeList &Attrs);
Value *emitBinaryFloatFnCall(Value *Op1, Value *Op2, StringRef Name,
IRBuilderBase &B, const AttributeList &Attrs);
/// Emit a call to the binary function DoubleFn, FloatFn or LongDoubleFn,
/// depending of the type of Op1.

View File

@@ -29,7 +29,7 @@ static bool inferAllPrototypeAttributes(
// explicitly visited by CGSCC passes in the new pass manager.)
if (F.isDeclaration() && !F.hasOptNone()) {
if (!F.hasFnAttribute(Attribute::NoBuiltin))
Changed |= inferNonMandatoryLibFuncAttrs(F, GetTLI(F));
Changed |= inferLibFuncAttributes(F, GetTLI(F));
Changed |= inferAttributesFromOthers(F);
}

View File

@@ -1188,9 +1188,9 @@ bool LoopIdiomRecognize::processLoopStridedStore(
Module *M = TheStore->getModule();
StringRef FuncName = "memset_pattern16";
FunctionCallee MSP = getOrInsertLibFunc(M, *TLI, LibFunc_memset_pattern16,
Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntIdxTy);
inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI);
FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
Int8PtrTy, Int8PtrTy, IntIdxTy);
inferLibFuncAttributes(M, FuncName, *TLI);
// Otherwise we should form a memset_pattern16. PatternValue is known to be
// an constant array of 16-bytes. Plop the value into a mergable global.

View File

@@ -39,6 +39,7 @@ STATISTIC(NumInaccessibleMemOrArgMemOnly,
STATISTIC(NumNoUnwind, "Number of functions inferred as nounwind");
STATISTIC(NumNoCapture, "Number of arguments inferred as nocapture");
STATISTIC(NumWriteOnlyArg, "Number of arguments inferred as writeonly");
STATISTIC(NumExtArg, "Number of arguments inferred as signext/zeroext.");
STATISTIC(NumReadOnlyArg, "Number of arguments inferred as readonly");
STATISTIC(NumNoAlias, "Number of function returns inferred as noalias");
STATISTIC(NumNoUndef, "Number of function returns inferred as noundef returns");
@@ -146,6 +147,16 @@ static bool setOnlyWritesMemory(Function &F, unsigned ArgNo) {
return true;
}
static bool setArgExtAttr(Function &F, unsigned ArgNo,
const TargetLibraryInfo &TLI, bool Signed = true) {
Attribute::AttrKind ExtAttr = TLI.getExtAttrForI32Param(Signed);
if (ExtAttr == Attribute::None || F.hasParamAttribute(ArgNo, ExtAttr))
return false;
F.addParamAttr(ArgNo, ExtAttr);
++NumExtArg;
return true;
}
static bool setRetNoUndef(Function &F) {
if (!F.getReturnType()->isVoidTy() &&
!F.hasRetAttribute(Attribute::NoUndef)) {
@@ -229,16 +240,15 @@ static bool setAllocSize(Function &F, unsigned ElemSizeArg,
return true;
}
bool llvm::inferNonMandatoryLibFuncAttrs(Module *M, StringRef Name,
const TargetLibraryInfo &TLI) {
bool llvm::inferLibFuncAttributes(Module *M, StringRef Name,
const TargetLibraryInfo &TLI) {
Function *F = M->getFunction(Name);
if (!F)
return false;
return inferNonMandatoryLibFuncAttrs(*F, TLI);
return inferLibFuncAttributes(*F, TLI);
}
bool llvm::inferNonMandatoryLibFuncAttrs(Function &F,
const TargetLibraryInfo &TLI) {
bool llvm::inferLibFuncAttributes(Function &F, const TargetLibraryInfo &TLI) {
LibFunc TheLibFunc;
if (!(TLI.getLibFunc(F, TheLibFunc) && TLI.has(TheLibFunc)))
return false;
@@ -835,6 +845,7 @@ bool llvm::inferNonMandatoryLibFuncAttrs(Function &F,
case LibFunc_putchar:
case LibFunc_putchar_unlocked:
Changed |= setRetAndArgsNoUndef(F);
Changed |= setArgExtAttr(F, 0, TLI);
Changed |= setDoesNotThrow(F);
return Changed;
case LibFunc_popen:
@@ -1055,6 +1066,7 @@ bool llvm::inferNonMandatoryLibFuncAttrs(Function &F,
case LibFunc_ldexp:
case LibFunc_ldexpf:
case LibFunc_ldexpl:
Changed |= setArgExtAttr(F, 1, TLI);
Changed |= setWillReturn(F);
return Changed;
case LibFunc_abs:
@@ -1191,83 +1203,6 @@ bool llvm::inferNonMandatoryLibFuncAttrs(Function &F,
}
}
static void setArgExtAttr(Function &F, unsigned ArgNo,
const TargetLibraryInfo &TLI, bool Signed = true) {
Attribute::AttrKind ExtAttr = TLI.getExtAttrForI32Param(Signed);
if (ExtAttr != Attribute::None && !F.hasParamAttribute(ArgNo, ExtAttr))
F.addParamAttr(ArgNo, ExtAttr);
}
FunctionCallee llvm::getOrInsertLibFunc(Module *M, const TargetLibraryInfo &TLI,
LibFunc TheLibFunc, FunctionType *T,
AttributeList AttributeList) {
assert(TLI.has(TheLibFunc) &&
"Creating call to non-existing library function.");
StringRef Name = TLI.getName(TheLibFunc);
FunctionCallee C = M->getOrInsertFunction(Name, T, AttributeList);
// Make sure any mandatory argument attributes are added.
// Any outgoing i32 argument should be handled with setArgExtAttr() which
// will add an extension attribute if the target ABI requires it. Adding
// argument extensions is typically done by the front end but when an
// optimizer is building a library call on its own it has to take care of
// this. Each such generated function must be handled here with sign or
// zero extensions as needed.
Function &F = *M->getFunction(Name);
switch (TheLibFunc) {
case LibFunc_fputc:
case LibFunc_putchar:
setArgExtAttr(F, 0, TLI);
break;
case LibFunc_ldexp:
case LibFunc_ldexpf:
case LibFunc_ldexpl:
case LibFunc_memchr:
case LibFunc_strchr:
setArgExtAttr(F, 1, TLI);
break;
case LibFunc_memccpy:
setArgExtAttr(F, 2, TLI);
break;
// These are functions that are known to not need any argument extension
// on any target: A size_t argument (which may be an i32 on some targets)
// should not trigger the assert below.
case LibFunc_bcmp:
case LibFunc_calloc:
case LibFunc_fwrite:
case LibFunc_malloc:
case LibFunc_memcmp:
case LibFunc_memcpy_chk:
case LibFunc_mempcpy:
case LibFunc_memset_pattern16:
case LibFunc_snprintf:
case LibFunc_strlcat:
case LibFunc_strlcpy:
case LibFunc_strncat:
case LibFunc_strncmp:
case LibFunc_strncpy:
case LibFunc_vsnprintf:
break;
default:
#ifndef NDEBUG
for (unsigned i = 0; i < T->getNumParams(); i++)
assert(!isa<IntegerType>(T->getParamType(i)) &&
"Unhandled integer argument.");
#endif
break;
}
return C;
}
FunctionCallee llvm::getOrInsertLibFunc(Module *M, const TargetLibraryInfo &TLI,
LibFunc TheLibFunc, FunctionType *T) {
return getOrInsertLibFunc(M, TLI, TheLibFunc, T, AttributeList());
}
bool llvm::hasFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
LibFunc DoubleFn, LibFunc FloatFn, LibFunc LongDoubleFn) {
switch (Ty->getTypeID()) {
@@ -1282,9 +1217,9 @@ bool llvm::hasFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
}
}
StringRef llvm::getFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
LibFunc DoubleFn, LibFunc FloatFn,
LibFunc LongDoubleFn, LibFunc &TheLibFunc) {
StringRef llvm::getFloatFnName(const TargetLibraryInfo *TLI, Type *Ty,
LibFunc DoubleFn, LibFunc FloatFn,
LibFunc LongDoubleFn) {
assert(hasFloatFn(TLI, Ty, DoubleFn, FloatFn, LongDoubleFn) &&
"Cannot get name for unavailable function!");
@@ -1292,13 +1227,10 @@ StringRef llvm::getFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
case Type::HalfTyID:
llvm_unreachable("No name for HalfTy!");
case Type::FloatTyID:
TheLibFunc = FloatFn;
return TLI->getName(FloatFn);
case Type::DoubleTyID:
TheLibFunc = DoubleFn;
return TLI->getName(DoubleFn);
default:
TheLibFunc = LongDoubleFn;
return TLI->getName(LongDoubleFn);
}
}
@@ -1321,8 +1253,8 @@ static Value *emitLibCall(LibFunc TheLibFunc, Type *ReturnType,
Module *M = B.GetInsertBlock()->getModule();
StringRef FuncName = TLI->getName(TheLibFunc);
FunctionType *FuncType = FunctionType::get(ReturnType, ParamTypes, IsVaArgs);
FunctionCallee Callee = getOrInsertLibFunc(M, *TLI, TheLibFunc, FuncType);
inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI);
FunctionCallee Callee = M->getOrInsertFunction(FuncName, FuncType);
inferLibFuncAttributes(M, FuncName, *TLI);
CallInst *CI = B.CreateCall(Callee, Operands, FuncName);
if (const Function *F =
dyn_cast<Function>(Callee.getCallee()->stripPointerCasts()))
@@ -1399,8 +1331,8 @@ Value *llvm::emitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize,
AS = AttributeList::get(M->getContext(), AttributeList::FunctionIndex,
Attribute::NoUnwind);
LLVMContext &Context = B.GetInsertBlock()->getContext();
FunctionCallee MemCpy = getOrInsertLibFunc(M, *TLI, LibFunc_memcpy_chk,
AttributeList::get(M->getContext(), AS), B.getInt8PtrTy(),
FunctionCallee MemCpy = M->getOrInsertFunction(
"__memcpy_chk", AttributeList::get(M->getContext(), AS), B.getInt8PtrTy(),
B.getInt8PtrTy(), B.getInt8PtrTy(), DL.getIntPtrType(Context),
DL.getIntPtrType(Context));
Dst = castToCStr(Dst, B);
@@ -1534,15 +1466,14 @@ static void appendTypeSuffix(Value *Op, StringRef &Name,
}
}
static Value *emitUnaryFloatFnCallHelper(Value *Op, LibFunc TheLibFunc,
StringRef Name, IRBuilderBase &B,
const AttributeList &Attrs,
const TargetLibraryInfo *TLI) {
static Value *emitUnaryFloatFnCallHelper(Value *Op, StringRef Name,
IRBuilderBase &B,
const AttributeList &Attrs) {
assert((Name != "") && "Must specify Name to emitUnaryFloatFnCall");
Module *M = B.GetInsertBlock()->getModule();
FunctionCallee Callee = getOrInsertLibFunc(M, *TLI, TheLibFunc, Op->getType(),
Op->getType());
FunctionCallee Callee =
M->getOrInsertFunction(Name, Op->getType(), Op->getType());
CallInst *CI = B.CreateCall(Callee, Op, Name);
// The incoming attribute set may have come from a speculatable intrinsic, but
@@ -1557,16 +1488,12 @@ static Value *emitUnaryFloatFnCallHelper(Value *Op, LibFunc TheLibFunc,
return CI;
}
Value *llvm::emitUnaryFloatFnCall(Value *Op, const TargetLibraryInfo *TLI,
StringRef Name, IRBuilderBase &B,
Value *llvm::emitUnaryFloatFnCall(Value *Op, StringRef Name, IRBuilderBase &B,
const AttributeList &Attrs) {
SmallString<20> NameBuffer;
appendTypeSuffix(Op, Name, NameBuffer);
LibFunc TheLibFunc;
TLI->getLibFunc(Name, TheLibFunc);
return emitUnaryFloatFnCallHelper(Op, TheLibFunc, Name, B, Attrs, TLI);
return emitUnaryFloatFnCallHelper(Op, Name, B, Attrs);
}
Value *llvm::emitUnaryFloatFnCall(Value *Op, const TargetLibraryInfo *TLI,
@@ -1574,24 +1501,23 @@ Value *llvm::emitUnaryFloatFnCall(Value *Op, const TargetLibraryInfo *TLI,
LibFunc LongDoubleFn, IRBuilderBase &B,
const AttributeList &Attrs) {
// Get the name of the function according to TLI.
LibFunc TheLibFunc;
StringRef Name = getFloatFn(TLI, Op->getType(), DoubleFn, FloatFn,
LongDoubleFn, TheLibFunc);
StringRef Name = getFloatFnName(TLI, Op->getType(),
DoubleFn, FloatFn, LongDoubleFn);
return emitUnaryFloatFnCallHelper(Op, TheLibFunc, Name, B, Attrs, TLI);
return emitUnaryFloatFnCallHelper(Op, Name, B, Attrs);
}
static Value *emitBinaryFloatFnCallHelper(Value *Op1, Value *Op2,
LibFunc TheLibFunc,
StringRef Name, IRBuilderBase &B,
const AttributeList &Attrs,
const TargetLibraryInfo *TLI) {
const TargetLibraryInfo *TLI = nullptr) {
assert((Name != "") && "Must specify Name to emitBinaryFloatFnCall");
Module *M = B.GetInsertBlock()->getModule();
FunctionCallee Callee = getOrInsertLibFunc(M, *TLI, TheLibFunc, Op1->getType(),
Op1->getType(), Op2->getType());
inferNonMandatoryLibFuncAttrs(M, Name, *TLI);
FunctionCallee Callee = M->getOrInsertFunction(Name, Op1->getType(),
Op1->getType(), Op2->getType());
if (TLI != nullptr)
inferLibFuncAttributes(M, Name, *TLI);
CallInst *CI = B.CreateCall(Callee, { Op1, Op2 }, Name);
// The incoming attribute set may have come from a speculatable intrinsic, but
@@ -1606,19 +1532,15 @@ static Value *emitBinaryFloatFnCallHelper(Value *Op1, Value *Op2,
return CI;
}
Value *llvm::emitBinaryFloatFnCall(Value *Op1, Value *Op2,
const TargetLibraryInfo *TLI,
StringRef Name, IRBuilderBase &B,
Value *llvm::emitBinaryFloatFnCall(Value *Op1, Value *Op2, StringRef Name,
IRBuilderBase &B,
const AttributeList &Attrs) {
assert((Name != "") && "Must specify Name to emitBinaryFloatFnCall");
SmallString<20> NameBuffer;
appendTypeSuffix(Op1, Name, NameBuffer);
LibFunc TheLibFunc;
TLI->getLibFunc(Name, TheLibFunc);
return emitBinaryFloatFnCallHelper(Op1, Op2, TheLibFunc, Name, B, Attrs, TLI);
return emitBinaryFloatFnCallHelper(Op1, Op2, Name, B, Attrs);
}
Value *llvm::emitBinaryFloatFnCall(Value *Op1, Value *Op2,
@@ -1627,11 +1549,10 @@ Value *llvm::emitBinaryFloatFnCall(Value *Op1, Value *Op2,
LibFunc LongDoubleFn, IRBuilderBase &B,
const AttributeList &Attrs) {
// Get the name of the function according to TLI.
LibFunc TheLibFunc;
StringRef Name = getFloatFn(TLI, Op1->getType(), DoubleFn, FloatFn,
LongDoubleFn, TheLibFunc);
StringRef Name = getFloatFnName(TLI, Op1->getType(),
DoubleFn, FloatFn, LongDoubleFn);
return emitBinaryFloatFnCallHelper(Op1, Op2, TheLibFunc, Name, B, Attrs, TLI);
return emitBinaryFloatFnCallHelper(Op1, Op2, Name, B, Attrs, TLI);
}
Value *llvm::emitPutChar(Value *Char, IRBuilderBase &B,
@@ -1641,9 +1562,9 @@ Value *llvm::emitPutChar(Value *Char, IRBuilderBase &B,
Module *M = B.GetInsertBlock()->getModule();
StringRef PutCharName = TLI->getName(LibFunc_putchar);
FunctionCallee PutChar = getOrInsertLibFunc(M, *TLI, LibFunc_putchar,
B.getInt32Ty(), B.getInt32Ty());
inferNonMandatoryLibFuncAttrs(M, PutCharName, *TLI);
FunctionCallee PutChar =
M->getOrInsertFunction(PutCharName, B.getInt32Ty(), B.getInt32Ty());
inferLibFuncAttributes(M, PutCharName, *TLI);
CallInst *CI = B.CreateCall(PutChar,
B.CreateIntCast(Char,
B.getInt32Ty(),
@@ -1664,9 +1585,9 @@ Value *llvm::emitPutS(Value *Str, IRBuilderBase &B,
Module *M = B.GetInsertBlock()->getModule();
StringRef PutsName = TLI->getName(LibFunc_puts);
FunctionCallee PutS = getOrInsertLibFunc(M, *TLI, LibFunc_puts, B.getInt32Ty(),
B.getInt8PtrTy());
inferNonMandatoryLibFuncAttrs(M, PutsName, *TLI);
FunctionCallee PutS =
M->getOrInsertFunction(PutsName, B.getInt32Ty(), B.getInt8PtrTy());
inferLibFuncAttributes(M, PutsName, *TLI);
CallInst *CI = B.CreateCall(PutS, castToCStr(Str, B), PutsName);
if (const Function *F =
dyn_cast<Function>(PutS.getCallee()->stripPointerCasts()))
@@ -1681,10 +1602,10 @@ Value *llvm::emitFPutC(Value *Char, Value *File, IRBuilderBase &B,
Module *M = B.GetInsertBlock()->getModule();
StringRef FPutcName = TLI->getName(LibFunc_fputc);
FunctionCallee F = getOrInsertLibFunc(M, *TLI, LibFunc_fputc, B.getInt32Ty(),
B.getInt32Ty(), File->getType());
FunctionCallee F = M->getOrInsertFunction(FPutcName, B.getInt32Ty(),
B.getInt32Ty(), File->getType());
if (File->getType()->isPointerTy())
inferNonMandatoryLibFuncAttrs(M, FPutcName, *TLI);
inferLibFuncAttributes(M, FPutcName, *TLI);
Char = B.CreateIntCast(Char, B.getInt32Ty(), /*isSigned*/true,
"chari");
CallInst *CI = B.CreateCall(F, {Char, File}, FPutcName);
@@ -1702,10 +1623,10 @@ Value *llvm::emitFPutS(Value *Str, Value *File, IRBuilderBase &B,
Module *M = B.GetInsertBlock()->getModule();
StringRef FPutsName = TLI->getName(LibFunc_fputs);
FunctionCallee F = getOrInsertLibFunc(M, *TLI, LibFunc_fputs, B.getInt32Ty(),
B.getInt8PtrTy(), File->getType());
FunctionCallee F = M->getOrInsertFunction(FPutsName, B.getInt32Ty(),
B.getInt8PtrTy(), File->getType());
if (File->getType()->isPointerTy())
inferNonMandatoryLibFuncAttrs(M, FPutsName, *TLI);
inferLibFuncAttributes(M, FPutsName, *TLI);
CallInst *CI = B.CreateCall(F, {castToCStr(Str, B), File}, FPutsName);
if (const Function *Fn =
@@ -1722,12 +1643,12 @@ Value *llvm::emitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilderBase &B,
Module *M = B.GetInsertBlock()->getModule();
LLVMContext &Context = B.GetInsertBlock()->getContext();
StringRef FWriteName = TLI->getName(LibFunc_fwrite);
FunctionCallee F = getOrInsertLibFunc(M, *TLI, LibFunc_fwrite,
DL.getIntPtrType(Context), B.getInt8PtrTy(), DL.getIntPtrType(Context),
DL.getIntPtrType(Context), File->getType());
FunctionCallee F = M->getOrInsertFunction(
FWriteName, DL.getIntPtrType(Context), B.getInt8PtrTy(),
DL.getIntPtrType(Context), DL.getIntPtrType(Context), File->getType());
if (File->getType()->isPointerTy())
inferNonMandatoryLibFuncAttrs(M, FWriteName, *TLI);
inferLibFuncAttributes(M, FWriteName, *TLI);
CallInst *CI =
B.CreateCall(F, {castToCStr(Ptr, B), Size,
ConstantInt::get(DL.getIntPtrType(Context), 1), File});
@@ -1746,9 +1667,9 @@ Value *llvm::emitMalloc(Value *Num, IRBuilderBase &B, const DataLayout &DL,
Module *M = B.GetInsertBlock()->getModule();
StringRef MallocName = TLI->getName(LibFunc_malloc);
LLVMContext &Context = B.GetInsertBlock()->getContext();
FunctionCallee Malloc = getOrInsertLibFunc(M, *TLI, LibFunc_malloc,
B.getInt8PtrTy(), DL.getIntPtrType(Context));
inferNonMandatoryLibFuncAttrs(M, MallocName, *TLI);
FunctionCallee Malloc = M->getOrInsertFunction(MallocName, B.getInt8PtrTy(),
DL.getIntPtrType(Context));
inferLibFuncAttributes(M, MallocName, *TLI);
CallInst *CI = B.CreateCall(Malloc, Num, MallocName);
if (const Function *F =
@@ -1767,9 +1688,9 @@ Value *llvm::emitCalloc(Value *Num, Value *Size, IRBuilderBase &B,
StringRef CallocName = TLI.getName(LibFunc_calloc);
const DataLayout &DL = M->getDataLayout();
IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext()));
FunctionCallee Calloc = getOrInsertLibFunc(M, TLI, LibFunc_calloc,
B.getInt8PtrTy(), PtrType, PtrType);
inferNonMandatoryLibFuncAttrs(M, CallocName, TLI);
FunctionCallee Calloc =
M->getOrInsertFunction(CallocName, B.getInt8PtrTy(), PtrType, PtrType);
inferLibFuncAttributes(M, CallocName, TLI);
CallInst *CI = B.CreateCall(Calloc, {Num, Size}, CallocName);
if (const auto *F =

View File

@@ -1254,8 +1254,7 @@ static Value *valueHasFloatPrecision(Value *Val) {
/// Shrink double -> float functions.
static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
bool isBinary, const TargetLibraryInfo *TLI,
bool isPrecise = false) {
bool isBinary, bool isPrecise = false) {
Function *CalleeFn = CI->getCalledFunction();
if (!CI->getType()->isDoubleTy() || !CalleeFn)
return nullptr;
@@ -1305,25 +1304,22 @@ static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
} else {
AttributeList CalleeAttrs = CalleeFn->getAttributes();
R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B,
CalleeAttrs)
: emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs);
R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
: emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
}
return B.CreateFPExt(R, B.getDoubleTy());
}
/// Shrink double -> float for unary functions.
static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
const TargetLibraryInfo *TLI,
bool isPrecise = false) {
return optimizeDoubleFP(CI, B, false, TLI, isPrecise);
return optimizeDoubleFP(CI, B, false, isPrecise);
}
/// Shrink double -> float for binary functions.
static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
const TargetLibraryInfo *TLI,
bool isPrecise = false) {
return optimizeDoubleFP(CI, B, true, TLI, isPrecise);
return optimizeDoubleFP(CI, B, true, isPrecise);
}
// cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
@@ -1791,7 +1787,7 @@ Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
// unless the result is expected to be double precision.
if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
hasFloatVersion(Name)) {
if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true))
if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true))
return Shrunk;
}
@@ -1805,7 +1801,7 @@ Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
Value *Ret = nullptr;
if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
hasFloatVersion(Name))
Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
Ret = optimizeUnaryDoubleFP(CI, B, true);
Type *Ty = CI->getType();
Value *Op = CI->getArgOperand(0);
@@ -1829,7 +1825,7 @@ Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
Function *Callee = CI->getCalledFunction();
StringRef Name = Callee->getName();
if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI))
if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
return Ret;
// The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
@@ -1861,7 +1857,7 @@ Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
Value *Ret = nullptr;
if (UnsafeFPShrink && hasFloatVersion(LogNm))
Ret = optimizeUnaryDoubleFP(Log, B, TLI, true);
Ret = optimizeUnaryDoubleFP(Log, B, true);
// The earlier call must also be 'fast' in order to do these transforms.
CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
@@ -1969,7 +1965,7 @@ Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
Log->doesNotAccessMemory()
? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
Arg->getOperand(0), "log")
: emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, Attrs);
: emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
// Since pow() may have side effects, e.g. errno,
// dead code elimination may not be trusted to remove it.
@@ -1992,7 +1988,7 @@ Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
Value *LogE = Log->doesNotAccessMemory()
? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
Eul, "log")
: emitUnaryFloatFnCall(Eul, TLI, LogNm, B, Attrs);
: emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
// Since exp() may have side effects, e.g. errno,
// dead code elimination may not be trusted to remove it.
@@ -2011,7 +2007,7 @@ Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
// condition below.
if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
Callee->getIntrinsicID() == Intrinsic::sqrt))
Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
Ret = optimizeUnaryDoubleFP(CI, B, true);
if (!CI->isFast())
return Ret;
@@ -2077,7 +2073,7 @@ Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
Value *Ret = nullptr;
StringRef Name = Callee->getName();
if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
Ret = optimizeUnaryDoubleFP(CI, B, true);
Value *Op1 = CI->getArgOperand(0);
auto *OpC = dyn_cast<CallInst>(Op1);
@@ -3014,11 +3010,11 @@ Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
case LibFunc_sinh:
case LibFunc_tanh:
if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
return optimizeUnaryDoubleFP(CI, Builder, TLI, true);
return optimizeUnaryDoubleFP(CI, Builder, true);
return nullptr;
case LibFunc_copysign:
if (hasFloatVersion(CI->getCalledFunction()->getName()))
return optimizeBinaryDoubleFP(CI, Builder, TLI);
return optimizeBinaryDoubleFP(CI, Builder);
return nullptr;
case LibFunc_fminf:
case LibFunc_fmin:

View File

@@ -3,6 +3,7 @@
; RUN: opt < %s -mtriple=x86_64-apple-macosx10.8.0 -inferattrs -S | FileCheck --match-full-lines --check-prefixes=CHECK,CHECK-KNOWN,CHECK-NOLINUX,CHECK-OPEN,CHECK-DARWIN %s
; RUN: opt < %s -mtriple=x86_64-unknown-linux-gnu -inferattrs -S | FileCheck --match-full-lines --check-prefixes=CHECK,CHECK-KNOWN,CHECK-LINUX %s
; RUN: opt < %s -mtriple=nvptx -inferattrs -S | FileCheck --match-full-lines --check-prefixes=CHECK-NOLINUX,CHECK-NVPTX %s
; RUN: opt < %s -mtriple=s390x-linux-gnu -inferattrs -S | FileCheck --check-prefixes=CHECK-SYSTEMZ %s
declare i32 @__nvvm_reflect(i8*)
; CHECK-NVPTX: declare noundef i32 @__nvvm_reflect(i8* noundef) [[NOFREE_NOUNWIND_READNONE:#[0-9]+]]
@@ -591,9 +592,11 @@ declare i64 @labs(i64)
declare i32 @lchown(i8*, i32, i32)
; CHECK: declare double @ldexp(double, i32) [[NOFREE_WILLRETURN:#[0-9]+]]
; CHECK-SYSTEMZ: declare double @ldexp(double, i32 signext)
declare double @ldexp(double, i32)
; CHECK: declare float @ldexpf(float, i32) [[NOFREE_WILLRETURN]]
; CHECK-SYSTEMZ: declare float @ldexpf(float, i32 signext)
declare float @ldexpf(float, i32)
; CHECK: declare x86_fp80 @ldexpl(x86_fp80, i32) [[NOFREE_WILLRETURN]]
@@ -753,10 +756,12 @@ declare i32 @printf(i8*, ...)
declare i32 @putc(i32, %opaque*)
; CHECK: declare noundef i32 @putchar(i32 noundef) [[NOFREE_NOUNWIND]]
; CHECK-SYSTEMZ: declare noundef i32 @putchar(i32 noundef signext)
declare i32 @putchar(i32)
; CHECK-KNOWN: declare noundef i32 @putchar_unlocked(i32 noundef) [[NOFREE_NOUNWIND]]
; CHECK-UNKNOWN: declare i32 @putchar_unlocked(i32){{$}}
; CHECK-SYSTEMZ: declare noundef i32 @putchar_unlocked(i32 noundef signext)
declare i32 @putchar_unlocked(i32)
; CHECK: declare noundef i32 @puts(i8* nocapture noundef readonly) [[NOFREE_NOUNWIND]]

View File

@@ -1,98 +0,0 @@
; RUN: opt < %s -passes=instcombine -S -mtriple=systemz-unknown | FileCheck %s
;
; Check that i32 arguments to generated libcalls have the proper extension
; attributes.
declare double @exp2(double)
declare float @exp2f(float)
declare fp128 @exp2l(fp128)
define double @fun1(i32 %x) {
; CHECK-LABEL: @fun1
; CHECK: call double @ldexp
%conv = sitofp i32 %x to double
%ret = call double @exp2(double %conv)
ret double %ret
}
define float @fun2(i32 %x) {
; CHECK-LABEL: @fun2
; CHECK: call float @ldexpf
%conv = sitofp i32 %x to float
%ret = call float @exp2f(float %conv)
ret float %ret
}
define fp128 @fun3(i8 zeroext %x) {
; CHECK-LABEL: @fun3
; CHECK: call fp128 @ldexpl
%conv = uitofp i8 %x to fp128
%ret = call fp128 @exp2l(fp128 %conv)
ret fp128 %ret
}
@a = common global [60 x i8] zeroinitializer, align 1
@b = common global [60 x i8] zeroinitializer, align 1
declare i8* @__memccpy_chk(i8*, i8*, i32, i64, i64)
define i8* @fun4() {
; CHECK-LABEL: @fun4
; CHECK: call i8* @memccpy
%dst = getelementptr inbounds [60 x i8], [60 x i8]* @a, i32 0, i32 0
%src = getelementptr inbounds [60 x i8], [60 x i8]* @b, i32 0, i32 0
%ret = call i8* @__memccpy_chk(i8* %dst, i8* %src, i32 0, i64 60, i64 -1)
ret i8* %ret
}
%FILE = type { }
@A = constant [2 x i8] c"A\00"
declare i32 @fputs(i8*, %FILE*)
define void @fun5(%FILE* %fp) {
; CHECK-LABEL: @fun5
; CHECK: call i32 @fputc
%str = getelementptr [2 x i8], [2 x i8]* @A, i32 0, i32 0
call i32 @fputs(i8* %str, %FILE* %fp)
ret void
}
@empty = constant [1 x i8] zeroinitializer
declare i32 @puts(i8*)
define void @fun6() {
; CHECK-LABEL: @fun6
; CHECK: call i32 @putchar
%str = getelementptr [1 x i8], [1 x i8]* @empty, i32 0, i32 0
call i32 @puts(i8* %str)
ret void
}
@.str1 = private constant [2 x i8] c"a\00"
declare i8* @strstr(i8*, i8*)
define i8* @fun7(i8* %str) {
; CHECK-LABEL: @fun7
; CHECK: call i8* @strchr
%pat = getelementptr inbounds [2 x i8], [2 x i8]* @.str1, i32 0, i32 0
%ret = call i8* @strstr(i8* %str, i8* %pat)
ret i8* %ret
}
; CHECK: declare i8* @strchr(i8*, i32 signext)
@hello = constant [14 x i8] c"hello world\5Cn\00"
@chp = global i8* zeroinitializer
declare i8* @strchr(i8*, i32)
define void @fun8(i32 %chr) {
; CHECK-LABEL: @fun8
; CHECK: call i8* @memchr
%src = getelementptr [14 x i8], [14 x i8]* @hello, i32 0, i32 0
%dst = call i8* @strchr(i8* %src, i32 %chr)
store i8* %dst, i8** @chp
ret void
}
; CHECK: declare double @ldexp(double, i32 signext)
; CHECK: declare float @ldexpf(float, i32 signext)
; CHECK: declare fp128 @ldexpl(fp128, i32 signext)
; CHECK: declare i8* @memccpy(i8* noalias writeonly, i8* noalias nocapture readonly, i32 signext, i64)
; CHECK: declare noundef i32 @fputc(i32 noundef signext, %FILE* nocapture noundef)
; CHECK: declare noundef i32 @putchar(i32 noundef signext)
; CHECK: declare i8* @memchr(i8*, i32 signext, i64)

View File

@@ -346,7 +346,7 @@ define float @logb_test1(float %f) {
; LINUX-NEXT: [[LOGBF:%.*]] = call fast float @logbf(float [[F:%.*]])
; LINUX-NEXT: ret float [[LOGBF]]
; MS32: [[POWF:%.*]] = call fast double @logb(double [[F:%.*]])
; MS64-NEXT: [[LOGBF:%.*]] = call fast float @_logbf(float [[F:%.*]])
; MS64-NEXT: [[LOGBF:%.*]] = call fast float @logbf(float [[F:%.*]])
;
%conv = fpext float %f to double
%call = call fast double @logb(double %conv)