[APInt] Add a simpler overload of multiplicativeInverse (#87610)
The current APInt::multiplicativeInverse takes a modulus which can be any value, but all in-tree callers use a power of two. Moreover, most callers want to use two to the power of the width of an existing APInt, which is awkward because 2^N is not representable as an N-bit APInt. Add a new overload of multiplicativeInverse which implicitly uses 2^BitWidth as the modulus.
This commit is contained in:
@@ -1743,6 +1743,9 @@ public:
|
||||
/// \returns the multiplicative inverse for a given modulo.
|
||||
APInt multiplicativeInverse(const APInt &modulo) const;
|
||||
|
||||
/// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth.
|
||||
APInt multiplicativeInverse() const;
|
||||
|
||||
/// @}
|
||||
/// \name Building-block Operations for APInt and APFloat
|
||||
/// @{
|
||||
|
||||
@@ -944,10 +944,7 @@ static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
|
||||
// Calculate the multiplicative inverse of K! / 2^T;
|
||||
// this multiplication factor will perform the exact division by
|
||||
// K! / 2^T.
|
||||
APInt Mod = APInt::getSignedMinValue(W+1);
|
||||
APInt MultiplyFactor = OddFactorial.zext(W+1);
|
||||
MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
|
||||
MultiplyFactor = MultiplyFactor.trunc(W);
|
||||
APInt MultiplyFactor = OddFactorial.multiplicativeInverse();
|
||||
|
||||
// Calculate the product, at width T+W
|
||||
IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
|
||||
@@ -10086,10 +10083,8 @@ static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
|
||||
// If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
|
||||
// (N / D) in general. The inverse itself always fits into BW bits, though,
|
||||
// so we immediately truncate it.
|
||||
APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
|
||||
APInt Mod(BW + 1, 0);
|
||||
Mod.setBit(BW - Mult2); // Mod = N / D
|
||||
APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
|
||||
APInt AD = A.lshr(Mult2).trunc(BW - Mult2); // AD = A / D
|
||||
APInt I = AD.multiplicativeInverse().zext(BW);
|
||||
|
||||
// 4. Compute the minimum unsigned root of the equation:
|
||||
// I * (B / D) mod (N / D)
|
||||
|
||||
@@ -5201,10 +5201,7 @@ MachineInstr *CombinerHelper::buildSDivUsingMul(MachineInstr &MI) {
|
||||
|
||||
// Calculate the multiplicative inverse modulo BW.
|
||||
// 2^W requires W + 1 bits, so we have to extend and then truncate.
|
||||
unsigned W = Divisor.getBitWidth();
|
||||
APInt Factor = Divisor.zext(W + 1)
|
||||
.multiplicativeInverse(APInt::getSignedMinValue(W + 1))
|
||||
.trunc(W);
|
||||
APInt Factor = Divisor.multiplicativeInverse();
|
||||
Shifts.push_back(MIB.buildConstant(ScalarShiftAmtTy, Shift).getReg(0));
|
||||
Factors.push_back(MIB.buildConstant(ScalarTy, Factor).getReg(0));
|
||||
return true;
|
||||
|
||||
@@ -6071,11 +6071,7 @@ static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
|
||||
Divisor.ashrInPlace(Shift);
|
||||
UseSRA = true;
|
||||
}
|
||||
// Calculate the multiplicative inverse, using Newton's method.
|
||||
APInt t;
|
||||
APInt Factor = Divisor;
|
||||
while ((t = Divisor * Factor) != 1)
|
||||
Factor *= APInt(Divisor.getBitWidth(), 2) - t;
|
||||
APInt Factor = Divisor.multiplicativeInverse();
|
||||
Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
|
||||
Factors.push_back(DAG.getConstant(Factor, dl, SVT));
|
||||
return true;
|
||||
@@ -6664,10 +6660,7 @@ TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
|
||||
// P = inv(D0, 2^W)
|
||||
// 2^W requires W + 1 bits, so we have to extend and then truncate.
|
||||
unsigned W = D.getBitWidth();
|
||||
APInt P = D0.zext(W + 1)
|
||||
.multiplicativeInverse(APInt::getSignedMinValue(W + 1))
|
||||
.trunc(W);
|
||||
assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
|
||||
APInt P = D0.multiplicativeInverse();
|
||||
assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
|
||||
|
||||
// Q = floor((2^W - 1) u/ D)
|
||||
@@ -6922,10 +6915,7 @@ TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
|
||||
// P = inv(D0, 2^W)
|
||||
// 2^W requires W + 1 bits, so we have to extend and then truncate.
|
||||
unsigned W = D.getBitWidth();
|
||||
APInt P = D0.zext(W + 1)
|
||||
.multiplicativeInverse(APInt::getSignedMinValue(W + 1))
|
||||
.trunc(W);
|
||||
assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
|
||||
APInt P = D0.multiplicativeInverse();
|
||||
assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
|
||||
|
||||
// A = floor((2^(W - 1) - 1) / D0) & -2^K
|
||||
@@ -7651,7 +7641,7 @@ bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
|
||||
//
|
||||
// For division, we can compute the remainder using the algorithm described
|
||||
// above, subtract it from the dividend to get an exact multiple of Constant.
|
||||
// Then multiply that extact multiply by the multiplicative inverse modulo
|
||||
// Then multiply that exact multiply by the multiplicative inverse modulo
|
||||
// (1 << (BitWidth / 2)) to get the quotient.
|
||||
|
||||
// If Constant is even, we can shift right the dividend and the divisor by the
|
||||
@@ -7786,10 +7776,7 @@ bool TargetLowering::expandDIVREMByConstant(SDNode *N,
|
||||
|
||||
// Multiply by the multiplicative inverse of the divisor modulo
|
||||
// (1 << BitWidth).
|
||||
APInt Mod = APInt::getSignedMinValue(BitWidth + 1);
|
||||
APInt MulFactor = Divisor.zext(BitWidth + 1);
|
||||
MulFactor = MulFactor.multiplicativeInverse(Mod);
|
||||
MulFactor = MulFactor.trunc(BitWidth);
|
||||
APInt MulFactor = Divisor.multiplicativeInverse();
|
||||
|
||||
SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend,
|
||||
DAG.getConstant(MulFactor, dl, VT));
|
||||
|
||||
@@ -1289,6 +1289,19 @@ APInt APInt::multiplicativeInverse(const APInt& modulo) const {
|
||||
return std::move(t[i]);
|
||||
}
|
||||
|
||||
/// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth.
|
||||
APInt APInt::multiplicativeInverse() const {
|
||||
assert((*this)[0] &&
|
||||
"multiplicative inverse is only defined for odd numbers!");
|
||||
|
||||
// Use Newton's method.
|
||||
APInt Factor = *this;
|
||||
APInt T;
|
||||
while (!(T = *this * Factor).isOne())
|
||||
Factor *= 2 - T;
|
||||
return Factor;
|
||||
}
|
||||
|
||||
/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
|
||||
/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
|
||||
/// variables here have the same names as in the algorithm. Comments explain
|
||||
|
||||
@@ -3257,9 +3257,10 @@ TEST(APIntTest, MultiplicativeInverseExaustive) {
|
||||
.multiplicativeInverse(APInt::getSignedMinValue(BitWidth + 1))
|
||||
.trunc(BitWidth);
|
||||
APInt One = V * MulInv;
|
||||
if (!V.isZero() && V.countr_zero() == 0) {
|
||||
if (V[0]) {
|
||||
// Multiplicative inverse exists for all odd numbers.
|
||||
EXPECT_TRUE(One.isOne());
|
||||
EXPECT_TRUE((V * V.multiplicativeInverse()).isOne());
|
||||
} else {
|
||||
// Multiplicative inverse does not exist for even numbers (and 0).
|
||||
EXPECT_TRUE(MulInv.isZero());
|
||||
|
||||
Reference in New Issue
Block a user