[Clang][Sema] Fix comparison of constraint expressions

This diff switches the approach to comparison of constraint expressions
to the new one based on template args substitution.
It continues the effort to fix our handling of out-of-line definitions
of constrained templates.
This is a recommit of e3b1083e00.

Differential revision: https://reviews.llvm.org/D146178
This commit is contained in:
Alexander Shaposhnikov
2023-05-03 20:38:34 +00:00
parent 293b4834b5
commit 3a54022934
10 changed files with 487 additions and 63 deletions

View File

@@ -2309,9 +2309,15 @@ protected:
return static_cast<Common *>(RedeclarableTemplateDecl::getCommonPtr());
}
void setCommonPtr(Common *C) {
RedeclarableTemplateDecl::Common = C;
}
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend class TemplateDeclInstantiator;
/// Load any lazily-loaded specializations from the external source.
void LoadLazySpecializations() const;

View File

@@ -232,9 +232,21 @@ enum class TemplateSubstitutionKind : char {
/// Replaces the current 'innermost' level with the provided argument list.
/// This is useful for type deduction cases where we need to get the entire
/// list from the AST, but then add the deduced innermost list.
void replaceInnermostTemplateArguments(ArgList Args) {
assert(TemplateArgumentLists.size() > 0 && "Replacing in an empty list?");
TemplateArgumentLists[0].Args = Args;
void replaceInnermostTemplateArguments(Decl *AssociatedDecl, ArgList Args) {
assert((!TemplateArgumentLists.empty() || NumRetainedOuterLevels) &&
"Replacing in an empty list?");
if (!TemplateArgumentLists.empty()) {
assert((TemplateArgumentLists[0].AssociatedDeclAndFinal.getPointer() ||
TemplateArgumentLists[0].AssociatedDeclAndFinal.getPointer() ==
AssociatedDecl) &&
"Trying to change incorrect declaration?");
TemplateArgumentLists[0].Args = Args;
} else {
--NumRetainedOuterLevels;
TemplateArgumentLists.push_back(
{{AssociatedDecl, /*Final=*/false}, Args});
}
}
/// Add an outermost level that we are not substituting. We have no

View File

@@ -721,7 +721,7 @@ CalculateTemplateDepthForConstraints(Sema &S, const NamedDecl *ND,
ND, /*Final=*/false, /*Innermost=*/nullptr, /*RelativeToPrimary=*/true,
/*Pattern=*/nullptr,
/*ForConstraintInstantiation=*/true, SkipForSpecialization);
return MLTAL.getNumSubstitutedLevels();
return MLTAL.getNumLevels();
}
namespace {
@@ -752,27 +752,44 @@ namespace {
};
} // namespace
static const Expr *SubstituteConstraintExpression(Sema &S, const NamedDecl *ND,
const Expr *ConstrExpr) {
MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
ND, /*Final=*/false, /*Innermost=*/nullptr,
/*RelativeToPrimary=*/true,
/*Pattern=*/nullptr, /*ForConstraintInstantiation=*/true,
/*SkipForSpecialization*/ false);
if (MLTAL.getNumSubstitutedLevels() == 0)
return ConstrExpr;
Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/false);
std::optional<Sema::CXXThisScopeRAII> ThisScope;
if (auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()))
ThisScope.emplace(S, const_cast<CXXRecordDecl *>(RD), Qualifiers());
ExprResult SubstConstr =
S.SubstConstraintExpr(const_cast<clang::Expr *>(ConstrExpr), MLTAL);
if (SFINAE.hasErrorOccurred() || !SubstConstr.isUsable())
return nullptr;
return SubstConstr.get();
}
bool Sema::AreConstraintExpressionsEqual(const NamedDecl *Old,
const Expr *OldConstr,
const NamedDecl *New,
const Expr *NewConstr) {
if (OldConstr == NewConstr)
return true;
if (Old && New && Old != New) {
unsigned Depth1 = CalculateTemplateDepthForConstraints(
*this, Old);
unsigned Depth2 = CalculateTemplateDepthForConstraints(
*this, New);
// Adjust the 'shallowest' verison of this to increase the depth to match
// the 'other'.
if (Depth2 > Depth1) {
OldConstr = AdjustConstraintDepth(*this, Depth2 - Depth1)
.TransformExpr(const_cast<Expr *>(OldConstr))
.get();
} else if (Depth1 > Depth2) {
NewConstr = AdjustConstraintDepth(*this, Depth1 - Depth2)
.TransformExpr(const_cast<Expr *>(NewConstr))
.get();
}
if (const Expr *SubstConstr =
SubstituteConstraintExpression(*this, Old, OldConstr))
OldConstr = SubstConstr;
else
return false;
if (const Expr *SubstConstr =
SubstituteConstraintExpression(*this, New, NewConstr))
NewConstr = SubstConstr;
else
return false;
}
llvm::FoldingSetNodeID ID1, ID2;

View File

@@ -1296,7 +1296,7 @@ bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
// We check the return type and template parameter lists for function
// templates first; the remaining checks follow.
bool SameTemplateParameterList = TemplateParameterListsAreEqual(
NewTemplate->getTemplateParameters(),
NewTemplate, NewTemplate->getTemplateParameters(), OldTemplate,
OldTemplate->getTemplateParameters(), false, TPL_TemplateMatch);
bool SameReturnType = Context.hasSameType(Old->getDeclaredReturnType(),
New->getDeclaredReturnType());

View File

@@ -2881,7 +2881,7 @@ CheckDeducedArgumentConstraints(Sema &S, TemplateDeclT *Template,
// not class-scope explicit specialization, so replace with Deduced Args
// instead of adding to inner-most.
if (NeedsReplacement)
MLTAL.replaceInnermostTemplateArguments(CanonicalDeducedArgs);
MLTAL.replaceInnermostTemplateArguments(Template, CanonicalDeducedArgs);
if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints, MLTAL,
Info.getLocation(),

View File

@@ -131,6 +131,38 @@ HandleDefaultTempArgIntoTempTempParam(const TemplateTemplateParmDecl *TTP,
return Response::Done();
}
Response HandlePartialClassTemplateSpec(
const ClassTemplatePartialSpecializationDecl *PartialClassTemplSpec,
MultiLevelTemplateArgumentList &Result, bool SkipForSpecialization) {
// We don't want the arguments from the Partial Specialization, since
// anything instantiating here cannot access the arguments from the
// specialized template anyway, so any substitution we would do with these
// partially specialized arguments would 'wrong' and confuse constraint
// instantiation. We only do this in the case of a constraint check, since
// code elsewhere actually uses these and replaces them later with what
// they mean.
// If we know this is the 'top level', we can replace this with an
// OuterRetainedLevel, else we have to generate a set of identity arguments.
// If this is the top-level template entity, we can just add a retained level
// and be done.
if (!PartialClassTemplSpec->getTemplateDepth()) {
if (!SkipForSpecialization)
Result.addOuterRetainedLevel();
return Response::Done();
}
// Else, we can replace this with an 'empty' level, and the checking will just
// alter the 'depth', since this we don't have the 'Index' for this level.
if (!SkipForSpecialization)
Result.addOuterTemplateArguments(
const_cast<ClassTemplatePartialSpecializationDecl *>(
PartialClassTemplSpec),
{}, /*Final=*/false);
return Response::UseNextDecl(PartialClassTemplSpec);
}
// Add template arguments from a class template instantiation.
Response
HandleClassTemplateSpec(const ClassTemplateSpecializationDecl *ClassTemplSpec,
@@ -208,6 +240,21 @@ Response HandleFunction(const FunctionDecl *Function,
return Response::UseNextDecl(Function);
}
Response HandleFunctionTemplateDecl(const FunctionTemplateDecl *FTD,
MultiLevelTemplateArgumentList &Result) {
if (!isa<ClassTemplateSpecializationDecl>(FTD->getDeclContext())) {
NestedNameSpecifier *NNS = FTD->getTemplatedDecl()->getQualifier();
const Type *Ty;
const TemplateSpecializationType *TSTy;
if (NNS && (Ty = NNS->getAsType()) &&
(TSTy = Ty->getAs<TemplateSpecializationType>()))
Result.addOuterTemplateArguments(const_cast<FunctionTemplateDecl *>(FTD),
TSTy->template_arguments(),
/*Final=*/false);
}
return Response::ChangeDecl(FTD->getLexicalDeclContext());
}
Response HandleRecordDecl(const CXXRecordDecl *Rec,
MultiLevelTemplateArgumentList &Result,
ASTContext &Context,
@@ -218,15 +265,10 @@ Response HandleRecordDecl(const CXXRecordDecl *Rec,
"Outer template not instantiated?");
if (ClassTemplate->isMemberSpecialization())
return Response::Done();
if (ForConstraintInstantiation) {
QualType RecordType = Context.getTypeDeclType(Rec);
QualType Injected = cast<InjectedClassNameType>(RecordType)
->getInjectedSpecializationType();
const auto *InjectedType = cast<TemplateSpecializationType>(Injected);
if (ForConstraintInstantiation)
Result.addOuterTemplateArguments(const_cast<CXXRecordDecl *>(Rec),
InjectedType->template_arguments(),
ClassTemplate->getInjectedTemplateArgs(),
/*Final=*/false);
}
}
bool IsFriend = Rec->getFriendObjectKind() ||
@@ -294,18 +336,23 @@ MultiLevelTemplateArgumentList Sema::getTemplateInstantiationArgs(
// Accumulate the set of template argument lists in this structure.
MultiLevelTemplateArgumentList Result;
if (Innermost)
using namespace TemplateInstArgsHelpers;
const Decl *CurDecl = ND;
if (Innermost) {
Result.addOuterTemplateArguments(const_cast<NamedDecl *>(ND),
Innermost->asArray(), Final);
const Decl *CurDecl = ND;
CurDecl = Response::UseNextDecl(ND).NextDecl;
}
while (!CurDecl->isFileContextDecl()) {
using namespace TemplateInstArgsHelpers;
Response R;
if (const auto *VarTemplSpec =
dyn_cast<VarTemplateSpecializationDecl>(CurDecl)) {
R = HandleVarTemplateSpec(VarTemplSpec, Result, SkipForSpecialization);
} else if (const auto *PartialClassTemplSpec =
dyn_cast<ClassTemplatePartialSpecializationDecl>(CurDecl)) {
R = HandlePartialClassTemplateSpec(PartialClassTemplSpec, Result,
SkipForSpecialization);
} else if (const auto *ClassTemplSpec =
dyn_cast<ClassTemplateSpecializationDecl>(CurDecl)) {
R = HandleClassTemplateSpec(ClassTemplSpec, Result,
@@ -318,6 +365,8 @@ MultiLevelTemplateArgumentList Sema::getTemplateInstantiationArgs(
} else if (const auto *CSD =
dyn_cast<ImplicitConceptSpecializationDecl>(CurDecl)) {
R = HandleImplicitConceptSpecializationDecl(CSD, Result);
} else if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(CurDecl)) {
R = HandleFunctionTemplateDecl(FTD, Result);
} else if (!isa<DeclContext>(CurDecl)) {
R = Response::DontClearRelativeToPrimaryNextDecl(CurDecl);
if (CurDecl->getDeclContext()->isTranslationUnit()) {

View File

@@ -1653,33 +1653,12 @@ Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) {
<< QualifierLoc.getSourceRange();
return nullptr;
}
if (PrevClassTemplate) {
const ClassTemplateDecl *MostRecentPrevCT =
PrevClassTemplate->getMostRecentDecl();
TemplateParameterList *PrevParams =
MostRecentPrevCT->getTemplateParameters();
// Make sure the parameter lists match.
if (!SemaRef.TemplateParameterListsAreEqual(
D->getTemplatedDecl(), InstParams,
MostRecentPrevCT->getTemplatedDecl(), PrevParams, true,
Sema::TPL_TemplateMatch))
return nullptr;
// Do some additional validation, then merge default arguments
// from the existing declarations.
if (SemaRef.CheckTemplateParameterList(InstParams, PrevParams,
Sema::TPC_ClassTemplate))
return nullptr;
}
}
CXXRecordDecl *RecordInst = CXXRecordDecl::Create(
SemaRef.Context, Pattern->getTagKind(), DC, Pattern->getBeginLoc(),
Pattern->getLocation(), Pattern->getIdentifier(), PrevDecl,
/*DelayTypeCreation=*/true);
if (QualifierLoc)
RecordInst->setQualifierInfo(QualifierLoc);
@@ -1689,16 +1668,38 @@ Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) {
ClassTemplateDecl *Inst
= ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(),
D->getIdentifier(), InstParams, RecordInst);
assert(!(isFriend && Owner->isDependentContext()));
Inst->setPreviousDecl(PrevClassTemplate);
RecordInst->setDescribedClassTemplate(Inst);
if (isFriend) {
if (PrevClassTemplate)
assert(!Owner->isDependentContext());
Inst->setLexicalDeclContext(Owner);
RecordInst->setLexicalDeclContext(Owner);
if (PrevClassTemplate) {
Inst->setCommonPtr(PrevClassTemplate->getCommonPtr());
RecordInst->setTypeForDecl(
PrevClassTemplate->getTemplatedDecl()->getTypeForDecl());
const ClassTemplateDecl *MostRecentPrevCT =
PrevClassTemplate->getMostRecentDecl();
TemplateParameterList *PrevParams =
MostRecentPrevCT->getTemplateParameters();
// Make sure the parameter lists match.
if (!SemaRef.TemplateParameterListsAreEqual(
RecordInst, InstParams, MostRecentPrevCT->getTemplatedDecl(),
PrevParams, true, Sema::TPL_TemplateMatch))
return nullptr;
// Do some additional validation, then merge default arguments
// from the existing declarations.
if (SemaRef.CheckTemplateParameterList(InstParams, PrevParams,
Sema::TPC_ClassTemplate))
return nullptr;
Inst->setAccess(PrevClassTemplate->getAccess());
else
} else {
Inst->setAccess(D->getAccess());
}
Inst->setObjectOfFriendDecl();
// TODO: do we want to track the instantiation progeny of this
@@ -1709,15 +1710,15 @@ Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) {
Inst->setInstantiatedFromMemberTemplate(D);
}
Inst->setPreviousDecl(PrevClassTemplate);
// Trigger creation of the type for the instantiation.
SemaRef.Context.getInjectedClassNameType(RecordInst,
Inst->getInjectedClassNameSpecialization());
SemaRef.Context.getInjectedClassNameType(
RecordInst, Inst->getInjectedClassNameSpecialization());
// Finish handling of friends.
if (isFriend) {
DC->makeDeclVisibleInContext(Inst);
Inst->setLexicalDeclContext(Owner);
RecordInst->setLexicalDeclContext(Owner);
return Inst;
}

View File

@@ -441,3 +441,27 @@ namespace NTTP {
templ_func<1>(u2);
}
}
namespace FriendOfFriend {
template <typename>
concept Concept = true;
template <Concept> class FriendOfBar;
template <Concept> class Bar {
template <Concept> friend class FriendOfBar;
};
Bar<void> BarInstance;
namespace internal {
void FriendOfFoo(FriendOfBar<void>);
}
template <Concept> class Foo {
friend void internal::FriendOfFoo(FriendOfBar<void>);
};
} // namespace FriendOfFriend

View File

@@ -127,3 +127,220 @@ static_assert(S<XY>::specialization("str") == SPECIALIZATION_CONCEPT);
static_assert(S<int>::specialization("str") == SPECIALIZATION_REQUIRES);
} // namespace multiple_template_parameter_lists
static constexpr int CONSTRAINED_METHOD_1 = 1;
static constexpr int CONSTRAINED_METHOD_2 = 2;
namespace constrained_members {
template <int>
struct S {
template <Concept C>
static constexpr int constrained_method();
};
template <>
template <Concept C>
constexpr int S<1>::constrained_method() { return CONSTRAINED_METHOD_1; }
template <>
template <Concept C>
constexpr int S<2>::constrained_method() { return CONSTRAINED_METHOD_2; }
static_assert(S<1>::constrained_method<XY>() == CONSTRAINED_METHOD_1);
static_assert(S<2>::constrained_method<XY>() == CONSTRAINED_METHOD_2);
template <class T1, class T2>
concept ConceptT1T2 = true;
template<typename T3>
struct S12 {
template<ConceptT1T2<T3> T4>
static constexpr int constrained_method();
};
template<>
template<ConceptT1T2<int> T5>
constexpr int S12<int>::constrained_method() { return CONSTRAINED_METHOD_1; }
template<>
template<ConceptT1T2<double> T5>
constexpr int S12<double>::constrained_method() { return CONSTRAINED_METHOD_2; }
static_assert(S12<int>::constrained_method<XY>() == CONSTRAINED_METHOD_1);
static_assert(S12<double>::constrained_method<XY>() == CONSTRAINED_METHOD_2);
} // namespace constrained members
namespace constrained_members_of_nested_types {
template <int>
struct S {
struct Inner0 {
struct Inner1 {
template <Concept C>
static constexpr int constrained_method();
};
};
};
template <>
template <Concept C>
constexpr int S<1>::Inner0::Inner1::constrained_method() { return CONSTRAINED_METHOD_1; }
template <>
template <Concept C>
constexpr int S<2>::Inner0::Inner1::constrained_method() { return CONSTRAINED_METHOD_2; }
static_assert(S<1>::Inner0::Inner1::constrained_method<XY>() == CONSTRAINED_METHOD_1);
static_assert(S<2>::Inner0::Inner1::constrained_method<XY>() == CONSTRAINED_METHOD_2);
template <class T1, class T2>
concept ConceptT1T2 = true;
template<typename T3>
struct S12 {
struct Inner0 {
struct Inner1 {
template<ConceptT1T2<T3> T4>
static constexpr int constrained_method();
};
};
};
template<>
template<ConceptT1T2<int> T5>
constexpr int S12<int>::Inner0::Inner1::constrained_method() { return CONSTRAINED_METHOD_1; }
template<>
template<ConceptT1T2<double> T5>
constexpr int S12<double>::Inner0::Inner1::constrained_method() { return CONSTRAINED_METHOD_2; }
static_assert(S12<int>::Inner0::Inner1::constrained_method<XY>() == CONSTRAINED_METHOD_1);
static_assert(S12<double>::Inner0::Inner1::constrained_method<XY>() == CONSTRAINED_METHOD_2);
} // namespace constrained_members_of_nested_types
namespace constrained_member_sfinae {
template<int N> struct S {
template<class T>
static constexpr int constrained_method() requires (sizeof(int[N * 1073741824 + 4]) == 16) {
return CONSTRAINED_METHOD_1;
}
template<class T>
static constexpr int constrained_method() requires (sizeof(int[N]) == 16);
};
template<>
template<typename T>
constexpr int S<4>::constrained_method() requires (sizeof(int[4]) == 16) {
return CONSTRAINED_METHOD_2;
}
// Verify that there is no amiguity in this case.
static_assert(S<4>::constrained_method<double>() == CONSTRAINED_METHOD_2);
} // namespace constrained_member_sfinae
namespace requires_expression_references_members {
void accept1(int x);
void accept2(XY xy);
template <class T> struct S {
T Field = T();
constexpr int constrained_method()
requires requires { accept1(Field); };
constexpr int constrained_method()
requires requires { accept2(Field); };
};
template <class T>
constexpr int S<T>::constrained_method()
requires requires { accept1(Field); } {
return CONSTRAINED_METHOD_1;
}
template <class T>
constexpr int S<T>::constrained_method()
requires requires { accept2(Field); } {
return CONSTRAINED_METHOD_2;
}
static_assert(S<int>().constrained_method() == CONSTRAINED_METHOD_1);
static_assert(S<XY>().constrained_method() == CONSTRAINED_METHOD_2);
} // namespace requires_expression_references_members
namespace GH60231 {
template<typename T0> concept C = true;
template <typename T1>
struct S {
template <typename F1> requires C<S<T1>>
void foo1(F1 f);
template <typename F2>
void foo2(F2 f) requires C<S<T1>>;
template <typename F3> requires C<F3>
void foo3(F3 f);
};
template <typename T2>
template <typename F4> requires C<S<T2>>
void S<T2>::foo1(F4 f) {}
template <typename T3>
template <typename F5>
void S<T3>::foo2(F5 f) requires C<S<T3>> {}
template <typename T4>
template <typename F6> requires C<F6>
void S<T4>::foo3(F6 f) {}
} // namespace GH60231
namespace GH62003 {
template <typename T0> concept Concept = true;
template <class T1>
struct S1 {
template <Concept C1>
static constexpr int foo();
};
template <class T2>
template <Concept C2>
constexpr int S1<T2>::foo() { return 1; }
template <Concept C3>
struct S2 {
template <class T3>
static constexpr int foo();
};
template <Concept C4>
template <class T4>
constexpr int S2<C4>::foo() { return 2; }
template <Concept C5>
struct S3 {
template <Concept C6>
static constexpr int foo();
};
template <Concept C7>
template <Concept C8>
constexpr int S3<C7>::foo() { return 3; }
static_assert(S1<int>::foo<int>() == 1);
static_assert(S2<int>::foo<int>() == 2);
static_assert(S3<int>::foo<int>() == 3);
} // namespace GH62003

View File

@@ -816,3 +816,101 @@ static_assert(Parent<int>::TakesBinary<int, 0>::i == 0);
static_assert(Parent<int>::TakesBinary<int, 0ULL>::i == 0);
}
namespace TemplateInsideNonTemplateClass {
template<typename T, typename U> concept C = true;
template<typename T> auto L = []<C<T> U>() {};
struct Q {
template<C<int> U> friend constexpr auto decltype(L<int>)::operator()() const;
};
template <class T>
concept C1 = false;
struct Foo {
template <typename>
struct Bar {};
template <typename T>
requires(C1<T>)
struct Bar<T>;
};
Foo::Bar<int> BarInstance;
} // namespace TemplateInsideNonTemplateClass
namespace GH61959 {
template <typename T0>
concept C = (sizeof(T0) >= 4);
template<typename...>
struct Orig { };
template<typename T>
struct Orig<T> {
template<typename> requires C<T>
void f() { }
template<typename> requires true
void f() { }
};
template <typename...> struct Mod {};
template <typename T1, typename T2>
struct Mod<T1, T2> {
template <typename> requires C<T1>
constexpr static int f() { return 1; }
template <typename> requires C<T2>
constexpr static int f() { return 2; }
};
static_assert(Mod<int, char>::f<double>() == 1);
static_assert(Mod<char, int>::f<double>() == 2);
template<typename T>
struct Outer {
template<typename ...>
struct Inner {};
template<typename U>
struct Inner<U> {
template<typename V>
void foo() requires C<U> && C<T> && C<V>{}
template<typename V>
void foo() requires true{}
};
};
void bar() {
Outer<int>::Inner<float> I;
I.foo<char>();
}
} // namespace GH61959
namespace TemplateInsideTemplateInsideTemplate {
template<typename T>
concept C1 = false;
template <unsigned I0>
struct W0 {
template <unsigned I1>
struct W1 {
template <typename T>
struct F {
enum { value = 1 };
};
template <typename T>
requires C1<T>
struct F<T> {
enum { value = 2 };
};
};
};
static_assert(W0<0>::W1<1>::F<int>::value == 1);
} // TemplateInsideTemplateInsideTemplate