[NFC] Vastly simplifies TypeSize

Simplifies the implementation of `TypeSize` while retaining its interface.
There is no need for abstract concepts like `LinearPolyBase`, `UnivariateLinearPolyBase` or `LinearPolySize`.

Differential Revision: https://reviews.llvm.org/D140263
This commit is contained in:
Guillaume Chatelet
2022-12-17 17:48:36 +00:00
parent fb6602616c
commit 4670d5ece5
5 changed files with 159 additions and 457 deletions

View File

@@ -31,176 +31,97 @@ namespace llvm {
/// done on a scalable vector. This function may not return.
void reportInvalidSizeRequest(const char *Msg);
template <typename LeafTy> struct LinearPolyBaseTypeTraits {};
/// StackOffset holds a fixed and a scalable offset in bytes.
class StackOffset {
int64_t Fixed = 0;
int64_t Scalable = 0;
//===----------------------------------------------------------------------===//
// LinearPolyBase - a base class for linear polynomials with multiple
// dimensions. This can e.g. be used to describe offsets that are have both a
// fixed and scalable component.
//===----------------------------------------------------------------------===//
/// LinearPolyBase describes a linear polynomial:
/// c0 * scale0 + c1 * scale1 + ... + cK * scaleK
/// where the scale is implicit, so only the coefficients are encoded.
template <typename LeafTy>
class LinearPolyBase {
public:
using ScalarTy = typename LinearPolyBaseTypeTraits<LeafTy>::ScalarTy;
static constexpr auto Dimensions = LinearPolyBaseTypeTraits<LeafTy>::Dimensions;
static_assert(Dimensions != std::numeric_limits<unsigned>::max(),
"Dimensions out of range");
private:
std::array<ScalarTy, Dimensions> Coefficients;
protected:
constexpr LinearPolyBase(ArrayRef<ScalarTy> Values) {
std::copy(Values.begin(), Values.end(), Coefficients.begin());
}
StackOffset(int64_t Fixed, int64_t Scalable)
: Fixed(Fixed), Scalable(Scalable) {}
public:
friend LeafTy &operator+=(LeafTy &LHS, const LeafTy &RHS) {
for (unsigned I=0; I<Dimensions; ++I)
LHS.Coefficients[I] += RHS.Coefficients[I];
return LHS;
}
friend LeafTy &operator-=(LeafTy &LHS, const LeafTy &RHS) {
for (unsigned I=0; I<Dimensions; ++I)
LHS.Coefficients[I] -= RHS.Coefficients[I];
return LHS;
}
friend LeafTy &operator*=(LeafTy &LHS, ScalarTy RHS) {
for (auto &C : LHS.Coefficients)
C *= RHS;
return LHS;
}
friend LeafTy operator+(const LeafTy &LHS, const LeafTy &RHS) {
LeafTy Copy = LHS;
return Copy += RHS;
}
friend LeafTy operator-(const LeafTy &LHS, const LeafTy &RHS) {
LeafTy Copy = LHS;
return Copy -= RHS;
}
friend LeafTy operator*(const LeafTy &LHS, ScalarTy RHS) {
LeafTy Copy = LHS;
return Copy *= RHS;
}
template <typename U = ScalarTy>
friend std::enable_if_t<std::is_signed<U>::value, LeafTy>
operator-(const LeafTy &LHS) {
LeafTy Copy = LHS;
return Copy *= -1;
}
constexpr bool operator==(const LinearPolyBase &RHS) const {
return std::equal(Coefficients.begin(), Coefficients.end(),
RHS.Coefficients.begin());
}
constexpr bool operator!=(const LinearPolyBase &RHS) const {
return !(*this == RHS);
}
constexpr bool isZero() const {
return all_of(Coefficients, [](const ScalarTy &C) { return C == 0; });
}
constexpr bool isNonZero() const { return !isZero(); }
constexpr explicit operator bool() const { return isNonZero(); }
constexpr ScalarTy getValue(unsigned Dim) const { return Coefficients[Dim]; }
};
//===----------------------------------------------------------------------===//
// StackOffset - Represent an offset with named fixed and scalable components.
//===----------------------------------------------------------------------===//
class StackOffset;
template <> struct LinearPolyBaseTypeTraits<StackOffset> {
using ScalarTy = int64_t;
static constexpr unsigned Dimensions = 2;
};
/// StackOffset is a class to represent an offset with 2 dimensions,
/// named fixed and scalable, respectively. This class allows a value for both
/// dimensions to depict e.g. "8 bytes and 16 scalable bytes", which is needed
/// to represent stack offsets.
class StackOffset : public LinearPolyBase<StackOffset> {
protected:
StackOffset(ScalarTy Fixed, ScalarTy Scalable)
: LinearPolyBase<StackOffset>({Fixed, Scalable}) {}
public:
StackOffset() : StackOffset({0, 0}) {}
StackOffset(const LinearPolyBase<StackOffset> &Other)
: LinearPolyBase<StackOffset>(Other) {}
static StackOffset getFixed(ScalarTy Fixed) { return {Fixed, 0}; }
static StackOffset getScalable(ScalarTy Scalable) { return {0, Scalable}; }
static StackOffset get(ScalarTy Fixed, ScalarTy Scalable) {
StackOffset() = default;
static StackOffset getFixed(int64_t Fixed) { return {Fixed, 0}; }
static StackOffset getScalable(int64_t Scalable) { return {0, Scalable}; }
static StackOffset get(int64_t Fixed, int64_t Scalable) {
return {Fixed, Scalable};
}
ScalarTy getFixed() const { return this->getValue(0); }
ScalarTy getScalable() const { return this->getValue(1); }
};
/// Returns the fixed component of the stack.
int64_t getFixed() const { return Fixed; }
//===----------------------------------------------------------------------===//
// UnivariateLinearPolyBase - a base class for linear polynomials with multiple
// dimensions, but where only one dimension can be set at any time.
// This can e.g. be used to describe sizes that are either fixed or scalable.
//===----------------------------------------------------------------------===//
/// Returns the scalable component of the stack.
int64_t getScalable() const { return Scalable; }
/// UnivariateLinearPolyBase is a base class for ElementCount and TypeSize.
/// Like LinearPolyBase it tries to represent a linear polynomial
/// where only one dimension can be set at any time, e.g.
/// 0 * scale0 + 0 * scale1 + ... + cJ * scaleJ + ... + 0 * scaleK
/// The dimension that is set is the univariate dimension.
template <typename LeafTy>
class UnivariateLinearPolyBase {
public:
using ScalarTy = typename LinearPolyBaseTypeTraits<LeafTy>::ScalarTy;
static constexpr auto Dimensions = LinearPolyBaseTypeTraits<LeafTy>::Dimensions;
static_assert(Dimensions != std::numeric_limits<unsigned>::max(),
"Dimensions out of range");
// Arithmetic operations.
StackOffset operator+(const StackOffset &RHS) const {
return {Fixed + RHS.Fixed, Scalable + RHS.Scalable};
}
StackOffset operator-(const StackOffset &RHS) const {
return {Fixed - RHS.Fixed, Scalable - RHS.Scalable};
}
StackOffset &operator+=(const StackOffset &RHS) {
Fixed += RHS.Fixed;
Scalable += RHS.Scalable;
return *this;
}
StackOffset &operator-=(const StackOffset &RHS) {
Fixed -= RHS.Fixed;
Scalable -= RHS.Scalable;
return *this;
}
StackOffset operator-() const { return {-Fixed, -Scalable}; }
protected:
ScalarTy Value; // The value at the univeriate dimension.
unsigned UnivariateDim; // The univeriate dimension.
constexpr UnivariateLinearPolyBase(ScalarTy Val, unsigned UnivariateDim)
: Value(Val), UnivariateDim(UnivariateDim) {
assert(UnivariateDim < Dimensions && "Dimension out of range");
// Equality comparisons.
bool operator==(const StackOffset &RHS) const {
return Fixed == RHS.Fixed && Scalable == RHS.Scalable;
}
bool operator!=(const StackOffset &RHS) const {
return Fixed != RHS.Fixed || Scalable != RHS.Scalable;
}
friend LeafTy &operator+=(LeafTy &LHS, const LeafTy &RHS) {
assert(LHS.UnivariateDim == RHS.UnivariateDim && "Invalid dimensions");
LHS.Value += RHS.Value;
// The bool operator returns true iff any of the components is non zero.
explicit operator bool() const { return Fixed != 0 || Scalable != 0; }
};
namespace details {
// Base class for ElementCount and TypeSize below.
template <typename LeafTy, typename ValueTy> class FixedOrScalableQuantity {
public:
using ScalarTy = ValueTy;
protected:
ScalarTy Quantity = 0;
bool Scalable = false;
constexpr FixedOrScalableQuantity() = default;
constexpr FixedOrScalableQuantity(ScalarTy Quantity, bool Scalable)
: Quantity(Quantity), Scalable(Scalable) {}
friend constexpr LeafTy &operator+=(LeafTy &LHS, const LeafTy &RHS) {
assert(LHS.Scalable == RHS.Scalable && "Incompatible types");
LHS.Quantity += RHS.Quantity;
return LHS;
}
friend LeafTy &operator-=(LeafTy &LHS, const LeafTy &RHS) {
assert(LHS.UnivariateDim == RHS.UnivariateDim && "Invalid dimensions");
LHS.Value -= RHS.Value;
friend constexpr LeafTy &operator-=(LeafTy &LHS, const LeafTy &RHS) {
assert(LHS.Scalable == RHS.Scalable && "Incompatible types");
LHS.Quantity -= RHS.Quantity;
return LHS;
}
friend constexpr LeafTy &operator*=(LeafTy &LHS, ScalarTy RHS) {
LHS.Value *= RHS;
LHS.Quantity *= RHS;
return LHS;
}
friend LeafTy operator+(const LeafTy &LHS, const LeafTy &RHS) {
friend constexpr LeafTy operator+(const LeafTy &LHS, const LeafTy &RHS) {
LeafTy Copy = LHS;
return Copy += RHS;
}
friend LeafTy operator-(const LeafTy &LHS, const LeafTy &RHS) {
friend constexpr LeafTy operator-(const LeafTy &LHS, const LeafTy &RHS) {
LeafTy Copy = LHS;
return Copy -= RHS;
}
@@ -211,96 +132,43 @@ protected:
}
template <typename U = ScalarTy>
friend std::enable_if_t<std::is_signed<U>::value, LeafTy>
friend constexpr std::enable_if_t<std::is_signed<U>::value, LeafTy>
operator-(const LeafTy &LHS) {
LeafTy Copy = LHS;
return Copy *= -1;
}
public:
constexpr bool operator==(const UnivariateLinearPolyBase &RHS) const {
return Value == RHS.Value && UnivariateDim == RHS.UnivariateDim;
constexpr bool operator==(const FixedOrScalableQuantity &RHS) const {
return Quantity == RHS.Quantity && Scalable == RHS.Scalable;
}
constexpr bool operator!=(const UnivariateLinearPolyBase &RHS) const {
return !(*this == RHS);
constexpr bool operator!=(const FixedOrScalableQuantity &RHS) const {
return Quantity != RHS.Quantity || Scalable != RHS.Scalable;
}
constexpr bool isZero() const { return !Value; }
constexpr bool isNonZero() const { return !isZero(); }
explicit constexpr operator bool() const { return isNonZero(); }
constexpr ScalarTy getValue(unsigned Dim) const {
return Dim == UnivariateDim ? Value : 0;
}
constexpr bool isZero() const { return Quantity == 0; }
/// Add \p RHS to the value at the univariate dimension.
constexpr bool isNonZero() const { return Quantity != 0; }
explicit operator bool() const { return isNonZero(); }
/// Add \p RHS to the underlying quantity.
constexpr LeafTy getWithIncrement(ScalarTy RHS) const {
return static_cast<LeafTy>(
UnivariateLinearPolyBase(Value + RHS, UnivariateDim));
return LeafTy::get(Quantity + RHS, Scalable);
}
/// Subtract \p RHS from the value at the univariate dimension.
constexpr LeafTy getWithDecrement(ScalarTy RHS) const {
return static_cast<LeafTy>(
UnivariateLinearPolyBase(Value - RHS, UnivariateDim));
}
};
/// Returns the minimum value this quantity can represent.
constexpr ScalarTy getKnownMinValue() const { return Quantity; }
/// Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr bool isScalable() const { return Scalable; }
//===----------------------------------------------------------------------===//
// LinearPolySize - base class for fixed- or scalable sizes.
// ^ ^
// | |
// | +----- ElementCount - Leaf class to represent an element count
// | (vscale x unsigned)
// |
// +-------- TypeSize - Leaf class to represent a type size
// (vscale x uint64_t)
//===----------------------------------------------------------------------===//
/// LinearPolySize is a base class to represent sizes. It is either
/// fixed-sized or it is scalable-sized, but it cannot be both.
template <typename LeafTy>
class LinearPolySize : public UnivariateLinearPolyBase<LeafTy> {
// Make the parent class a friend, so that it can access the protected
// conversion/copy-constructor for UnivariatePolyBase<LeafTy> ->
// LinearPolySize<LeafTy>.
friend class UnivariateLinearPolyBase<LeafTy>;
public:
using ScalarTy = typename UnivariateLinearPolyBase<LeafTy>::ScalarTy;
enum Dims : unsigned { FixedDim = 0, ScalableDim = 1 };
protected:
constexpr LinearPolySize(ScalarTy MinVal, Dims D)
: UnivariateLinearPolyBase<LeafTy>(MinVal, D) {}
constexpr LinearPolySize(const UnivariateLinearPolyBase<LeafTy> &V)
: UnivariateLinearPolyBase<LeafTy>(V) {}
public:
static constexpr LeafTy getFixed(ScalarTy MinVal) {
return static_cast<LeafTy>(LinearPolySize(MinVal, FixedDim));
}
static constexpr LeafTy getScalable(ScalarTy MinVal) {
return static_cast<LeafTy>(LinearPolySize(MinVal, ScalableDim));
}
static constexpr LeafTy get(ScalarTy MinVal, bool Scalable) {
return static_cast<LeafTy>(
LinearPolySize(MinVal, Scalable ? ScalableDim : FixedDim));
}
static constexpr LeafTy getNull() { return get(0, false); }
/// Returns the minimum value this size can represent.
constexpr ScalarTy getKnownMinValue() const { return this->Value; }
/// Returns whether the size is scaled by a runtime quantity (vscale).
constexpr bool isScalable() const {
return this->UnivariateDim == ScalableDim;
}
/// A return value of true indicates we know at compile time that the number
/// of elements (vscale * Min) is definitely even. However, returning false
/// does not guarantee that the total number of elements is odd.
constexpr bool isKnownEven() const { return (getKnownMinValue() & 0x1) == 0; }
/// This function tells the caller whether the element count is known at
/// compile time to be a multiple of the scalar value RHS.
constexpr bool isKnownMultipleOf(ScalarTy RHS) const {
@@ -316,8 +184,8 @@ public:
return getKnownMinValue();
}
// For some cases, size ordering between scalable and fixed size types cannot
// be determined at compile time, so such comparisons aren't allowed.
// For some cases, quantity ordering between scalable and fixed quantity types
// cannot be determined at compile time, so such comparisons aren't allowed.
//
// e.g. <vscale x 2 x i16> could be bigger than <4 x i32> with a runtime
// vscale >= 5, equal sized with a vscale of 4, and smaller with
@@ -326,29 +194,29 @@ public:
// All the functions below make use of the fact vscale is always >= 1, which
// means that <vscale x 4 x i32> is guaranteed to be >= <4 x i32>, etc.
static constexpr bool isKnownLT(const LinearPolySize &LHS,
const LinearPolySize &RHS) {
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS,
const FixedOrScalableQuantity &RHS) {
if (!LHS.isScalable() || RHS.isScalable())
return LHS.getKnownMinValue() < RHS.getKnownMinValue();
return false;
}
static constexpr bool isKnownGT(const LinearPolySize &LHS,
const LinearPolySize &RHS) {
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS,
const FixedOrScalableQuantity &RHS) {
if (LHS.isScalable() || !RHS.isScalable())
return LHS.getKnownMinValue() > RHS.getKnownMinValue();
return false;
}
static constexpr bool isKnownLE(const LinearPolySize &LHS,
const LinearPolySize &RHS) {
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS,
const FixedOrScalableQuantity &RHS) {
if (!LHS.isScalable() || RHS.isScalable())
return LHS.getKnownMinValue() <= RHS.getKnownMinValue();
return false;
}
static constexpr bool isKnownGE(const LinearPolySize &LHS,
const LinearPolySize &RHS) {
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS,
const FixedOrScalableQuantity &RHS) {
if (LHS.isScalable() || !RHS.isScalable())
return LHS.getKnownMinValue() >= RHS.getKnownMinValue();
return false;
@@ -363,31 +231,31 @@ public:
/// isKnownMultipleOf(RHS), which lets the caller know if it's possible to
/// perform a lossless divide by RHS.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const {
return static_cast<LeafTy>(
LinearPolySize::get(getKnownMinValue() / RHS, isScalable()));
return LeafTy::get(getKnownMinValue() / RHS, isScalable());
}
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const {
return static_cast<LeafTy>(
LinearPolySize::get(getKnownMinValue() * RHS, isScalable()));
return LeafTy::get(getKnownMinValue() * RHS, isScalable());
}
constexpr LeafTy coefficientNextPowerOf2() const {
return static_cast<LeafTy>(LinearPolySize::get(
return LeafTy::get(
static_cast<ScalarTy>(llvm::NextPowerOf2(getKnownMinValue())),
isScalable()));
isScalable());
}
/// Returns true if there exists a value X where RHS.multiplyCoefficientBy(X)
/// will result in a value whose size matches our own.
constexpr bool hasKnownScalarFactor(const LinearPolySize &RHS) const {
/// will result in a value whose quantity matches our own.
constexpr bool
hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const {
return isScalable() == RHS.isScalable() &&
getKnownMinValue() % RHS.getKnownMinValue() == 0;
}
/// Returns a value X where RHS.multiplyCoefficientBy(X) will result in a
/// value whose size matches our own.
constexpr ScalarTy getKnownScalarFactor(const LinearPolySize &RHS) const {
/// value whose quantity matches our own.
constexpr ScalarTy
getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const {
assert(hasKnownScalarFactor(RHS) && "Expected RHS to be a known factor!");
return getKnownMinValue() / RHS.getKnownMinValue();
}
@@ -400,22 +268,35 @@ public:
}
};
class ElementCount;
template <> struct LinearPolyBaseTypeTraits<ElementCount> {
using ScalarTy = unsigned;
static constexpr unsigned Dimensions = 2;
};
} // namespace details
// Stores the number of elements for a type and whether this type is fixed
// (N-Elements) or scalable (e.g., SVE).
// - ElementCount::getFixed(1) : A scalar value.
// - ElementCount::getFixed(2) : A vector type holding 2 values.
// - ElementCount::getScalable(4) : A scalable vector type holding 4 values.
class ElementCount
: public details::FixedOrScalableQuantity<ElementCount, unsigned> {
constexpr ElementCount(ScalarTy MinVal, bool Scalable)
: FixedOrScalableQuantity(MinVal, Scalable) {}
constexpr ElementCount(
const FixedOrScalableQuantity<ElementCount, unsigned> &V)
: FixedOrScalableQuantity(V) {}
class ElementCount : public LinearPolySize<ElementCount> {
public:
constexpr ElementCount() : LinearPolySize(LinearPolySize::getNull()) {}
constexpr ElementCount() : FixedOrScalableQuantity() {}
constexpr ElementCount(const LinearPolySize<ElementCount> &V)
: LinearPolySize(V) {}
static constexpr ElementCount getFixed(ScalarTy MinVal) {
return ElementCount(MinVal, false);
}
static constexpr ElementCount getScalable(ScalarTy MinVal) {
return ElementCount(MinVal, true);
}
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable) {
return ElementCount(MinVal, Scalable);
}
/// Counting predicates.
///
///@{ Number of elements..
/// Exactly one element.
constexpr bool isScalar() const {
return !isScalable() && getKnownMinValue() == 1;
@@ -424,33 +305,33 @@ public:
constexpr bool isVector() const {
return (isScalable() && getKnownMinValue() != 0) || getKnownMinValue() > 1;
}
///@}
};
// This class is used to represent the size of types. If the type is of fixed
class TypeSize;
template <> struct LinearPolyBaseTypeTraits<TypeSize> {
using ScalarTy = uint64_t;
static constexpr unsigned Dimensions = 2;
};
// Stores the size of a type. If the type is of fixed size, it will represent
// the exact size. If the type is a scalable vector, it will represent the known
// minimum size.
class TypeSize : public details::FixedOrScalableQuantity<TypeSize, uint64_t> {
TypeSize(const FixedOrScalableQuantity<TypeSize, uint64_t> &V)
: FixedOrScalableQuantity(V) {}
// TODO: Most functionality in this class will gradually be phased out
// so it will resemble LinearPolySize as much as possible.
//
// TypeSize is used to represent the size of types. If the type is of fixed
// size, it will represent the exact size. If the type is a scalable vector,
// it will represent the known minimum size.
class TypeSize : public LinearPolySize<TypeSize> {
public:
constexpr TypeSize(const LinearPolySize<TypeSize> &V) : LinearPolySize(V) {}
constexpr TypeSize(ScalarTy MinVal, bool IsScalable)
: LinearPolySize(LinearPolySize::get(MinVal, IsScalable)) {}
constexpr TypeSize(ScalarTy Quantity, bool Scalable)
: FixedOrScalableQuantity(Quantity, Scalable) {}
static constexpr TypeSize Fixed(ScalarTy MinVal) {
return TypeSize(MinVal, false);
static constexpr TypeSize getFixed(ScalarTy ExactSize) {
return TypeSize(ExactSize, false);
}
static constexpr TypeSize Scalable(ScalarTy MinVal) {
return TypeSize(MinVal, true);
static constexpr TypeSize getScalable(ScalarTy MinimunSize) {
return TypeSize(MinimunSize, true);
}
static constexpr TypeSize get(ScalarTy Quantity, bool Scalable) {
return TypeSize(Quantity, Scalable);
}
static constexpr TypeSize Fixed(ScalarTy ExactSize) {
return TypeSize(ExactSize, false);
}
static constexpr TypeSize Scalable(ScalarTy MinimumSize) {
return TypeSize(MinimumSize, true);
}
constexpr ScalarTy getFixedSize() const { return getFixedValue(); }
@@ -512,7 +393,7 @@ public:
//===----------------------------------------------------------------------===//
/// Returns a TypeSize with a known minimum size that is the next integer
/// (mod 2**64) that is greater than or equal to \p Value and is a multiple
/// (mod 2**64) that is greater than or equal to \p Quantity and is a multiple
/// of \p Align. \p Align must be non-zero.
///
/// Similar to the alignTo functions in MathExtras.h
@@ -522,10 +403,11 @@ inline constexpr TypeSize alignTo(TypeSize Size, uint64_t Align) {
Size.isScalable()};
}
/// Stream operator function for `LinearPolySize`.
template <typename LeafTy>
inline raw_ostream &operator<<(raw_ostream &OS,
const LinearPolySize<LeafTy> &PS) {
/// Stream operator function for `FixedOrScalableQuantity`.
template <typename LeafTy, typename ScalarTy>
inline raw_ostream &
operator<<(raw_ostream &OS,
const details::FixedOrScalableQuantity<LeafTy, ScalarTy> &PS) {
PS.print(OS);
return OS;
}
@@ -544,7 +426,6 @@ template <> struct DenseMapInfo<ElementCount, void> {
return HashVal;
}
static bool isEqual(const ElementCount &LHS, const ElementCount &RHS) {
return LHS == RHS;
}

View File

@@ -51,7 +51,6 @@ add_llvm_unittest(SupportTests
JSONTest.cpp
KnownBitsTest.cpp
LEB128Test.cpp
LinearPolyBaseTest.cpp
LineIteratorTest.cpp
LockFileManagerTest.cpp
MatchersTest.cpp

View File

@@ -1,176 +0,0 @@
//===- TestPoly3D.cpp - Poly3D unit tests------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/TypeSize.h"
#include "gtest/gtest.h"
using namespace llvm;
class Poly3D;
namespace llvm {
template <> struct LinearPolyBaseTypeTraits<Poly3D> {
using ScalarTy = int64_t;
static const unsigned Dimensions = 3;
};
}
using Poly3DBase = LinearPolyBase<Poly3D>;
class Poly3D : public Poly3DBase {
public:
using ScalarTy = Poly3DBase::ScalarTy;
Poly3D(ScalarTy x, ScalarTy y, ScalarTy z) : Poly3DBase({x, y, z}) {}
Poly3D(const Poly3DBase &Convert) : Poly3DBase(Convert) {}
};
TEST(LinearPolyBase, Poly3D_isZero) {
EXPECT_TRUE(Poly3D(0, 0, 0).isZero());
EXPECT_TRUE(Poly3D(0, 0, 1).isNonZero());
EXPECT_TRUE(Poly3D(0, 0, 1));
}
TEST(LinearPolyBase, Poly3D_Equality) {
EXPECT_EQ(Poly3D(1, 2, 3), Poly3D(1, 2, 3));
EXPECT_NE(Poly3D(1, 2, 3), Poly3D(1, 2, 4));
}
TEST(LinearPolyBase, Poly3D_GetValue) {
EXPECT_EQ(Poly3D(1, 2, 3).getValue(0), 1);
EXPECT_EQ(Poly3D(1, 2, 3).getValue(1), 2);
EXPECT_EQ(Poly3D(1, 2, 3).getValue(2), 3);
}
TEST(LinearPolyBase, Poly3D_Add) {
// Test operator+
EXPECT_EQ(Poly3D(42, 0, 0) + Poly3D(0, 42, 0) + Poly3D(0, 0, 42),
Poly3D(42, 42, 42));
// Test operator+=
Poly3D X(42, 0, 0);
X += Poly3D(0, 42, 0);
X += Poly3D(0, 0, 42);
EXPECT_EQ(X, Poly3D(42, 42, 42));
}
TEST(LinearPolyBase, Poly3D_Sub) {
// Test operator-
EXPECT_EQ(Poly3D(42, 42, 42) - Poly3D(42, 0, 0) - Poly3D(0, 42, 0) -
Poly3D(0, 0, 42),
Poly3D(0, 0, 0));
// Test operator-=
Poly3D X(42, 42, 42);
X -= Poly3D(42, 0, 0);
X -= Poly3D(0, 42, 0);
X -= Poly3D(0, 0, 42);
EXPECT_EQ(X, Poly3D(0, 0, 0));
}
TEST(LinearPolyBase, Poly3D_Scale) {
// Test operator*
EXPECT_EQ(Poly3D(1, 2, 4) * 2, Poly3D(2, 4, 8));
EXPECT_EQ(Poly3D(1, 2, 4) * -2, Poly3D(-2, -4, -8));
}
TEST(LinearPolyBase, Poly3D_Invert) {
// Test operator-
EXPECT_EQ(-Poly3D(2, 4, 8), Poly3D(-2, -4, -8));
}
class Univariate3D;
namespace llvm {
template <> struct LinearPolyBaseTypeTraits<Univariate3D> {
using ScalarTy = int64_t;
static const unsigned Dimensions = 3;
};
}
using Univariate3DBase = UnivariateLinearPolyBase<Univariate3D>;
class Univariate3D : public Univariate3DBase {
public:
using ScalarTy = Univariate3DBase::ScalarTy;
constexpr Univariate3D(ScalarTy x, unsigned Dim) : Univariate3DBase(x, Dim) {}
Univariate3D(const Univariate3DBase &Convert) : Univariate3DBase(Convert) {}
};
TEST(UnivariateLinearPolyBase, Univariate3D_isZero) {
EXPECT_TRUE(Univariate3D(0, 0).isZero());
EXPECT_TRUE(Univariate3D(0, 1).isZero());
EXPECT_TRUE(Univariate3D(0, 2).isZero());
EXPECT_TRUE(Univariate3D(1, 0).isNonZero());
EXPECT_TRUE(Univariate3D(1, 1).isNonZero());
EXPECT_TRUE(Univariate3D(1, 2).isNonZero());
EXPECT_TRUE(Univariate3D(1, 0));
}
TEST(UnivariateLinearPolyBase, Univariate3D_Equality) {
EXPECT_EQ(Univariate3D(1, 0), Univariate3D(1, 0));
EXPECT_NE(Univariate3D(1, 0), Univariate3D(1, 2));
EXPECT_NE(Univariate3D(1, 0), Univariate3D(1, 1));
EXPECT_NE(Univariate3D(1, 0), Univariate3D(2, 0));
EXPECT_NE(Univariate3D(1, 0), Univariate3D(0, 0));
}
TEST(UnivariateLinearPolyBase, Univariate3D_GetValue) {
EXPECT_EQ(Univariate3D(42, 0).getValue(0), 42);
EXPECT_EQ(Univariate3D(42, 0).getValue(1), 0);
EXPECT_EQ(Univariate3D(42, 0).getValue(2), 0);
EXPECT_EQ(Univariate3D(42, 1).getValue(0), 0);
EXPECT_EQ(Univariate3D(42, 1).getValue(1), 42);
EXPECT_EQ(Univariate3D(42, 1).getValue(2), 0);
}
TEST(UnivariateLinearPolyBase, Univariate3D_Add) {
// Test operator+
EXPECT_EQ(Univariate3D(42, 0) + Univariate3D(42, 0), Univariate3D(84, 0));
EXPECT_EQ(Univariate3D(42, 1) + Univariate3D(42, 1), Univariate3D(84, 1));
EXPECT_DEBUG_DEATH(Univariate3D(42, 0) + Univariate3D(42, 1),
"Invalid dimensions");
// Test operator+=
Univariate3D X(42, 0);
X += Univariate3D(42, 0);
EXPECT_EQ(X, Univariate3D(84, 0));
// Test 'getWithIncrement' method
EXPECT_EQ(Univariate3D(42, 0).getWithIncrement(1), Univariate3D(43, 0));
EXPECT_EQ(Univariate3D(42, 1).getWithIncrement(2), Univariate3D(44, 1));
EXPECT_EQ(Univariate3D(42, 2).getWithIncrement(3), Univariate3D(45, 2));
}
TEST(UnivariateLinearPolyBase, Univariate3D_Sub) {
// Test operator+
EXPECT_EQ(Univariate3D(84, 0) - Univariate3D(42, 0), Univariate3D(42, 0));
EXPECT_EQ(Univariate3D(84, 1) - Univariate3D(42, 1), Univariate3D(42, 1));
EXPECT_DEBUG_DEATH(Univariate3D(84, 0) - Univariate3D(42, 1),
"Invalid dimensions");
// Test operator+=
Univariate3D X(84, 0);
X -= Univariate3D(42, 0);
EXPECT_EQ(X, Univariate3D(42, 0));
// Test 'getWithDecrement' method
EXPECT_EQ(Univariate3D(43, 0).getWithDecrement(1), Univariate3D(42, 0));
EXPECT_EQ(Univariate3D(44, 1).getWithDecrement(2), Univariate3D(42, 1));
EXPECT_EQ(Univariate3D(45, 2).getWithDecrement(3), Univariate3D(42, 2));
}
TEST(UnivariateLinearPolyBase, Univariate3D_Scale) {
// Test operator*
EXPECT_EQ(Univariate3D(4, 0) * 2, Univariate3D(8, 0));
EXPECT_EQ(Univariate3D(4, 1) * -2, Univariate3D(-8, 1));
}
TEST(UnivariateLinearPolyBase, Univariate3D_Invert) {
// Test operator-
EXPECT_EQ(-Univariate3D(4, 0), Univariate3D(-4, 0));
EXPECT_EQ(-Univariate3D(4, 1), Univariate3D(-4, 1));
}

View File

@@ -35,7 +35,7 @@ static_assert(!CEElementCountFixed3.isScalable());
constexpr ElementCount CEElementCountScalable4 = ElementCount::getScalable(4);
static_assert(CEElementCountScalable4.isScalable());
static_assert(!ElementCount::getNull().isScalable());
static_assert(!ElementCount().isScalable());
static_assert(
CEElementCountScalable4.hasKnownScalarFactor(ElementCount::getScalable(2)));
static_assert(ElementCount::getScalable(8).getKnownScalarFactor(

View File

@@ -740,7 +740,7 @@ bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths,
MVT T) -> bool {
return !Lengths.count(T.isVector() ? T.getVectorElementCount()
: ElementCount::getNull());
: ElementCount());
};
SmallVector<unsigned, 4> Modes;
@@ -751,11 +751,9 @@ bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
SmallDenseSet<ElementCount> VN, WN;
for (MVT T : VS)
VN.insert(T.isVector() ? T.getVectorElementCount()
: ElementCount::getNull());
VN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
for (MVT T : WS)
WN.insert(T.isVector() ? T.getVectorElementCount()
: ElementCount::getNull());
WN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));