[mlir][sparse] Fix rewriting for convert op and concatenate op.
Fix a problem in convert op rewriting where it used the original index for ToIndicesOp. Extend the concatenate op rewriting to handle dense destination and dynamic shape destination. Make the concatenate op integration test run on the codegen path. Reviewed By: Peiming Differential Revision: https://reviews.llvm.org/D138057
This commit is contained in:
@@ -15,6 +15,7 @@
|
||||
#include "mlir/Dialect/Arith/IR/Arith.h"
|
||||
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
||||
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
||||
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
||||
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
||||
#include "mlir/Dialect/SCF/IR/SCF.h"
|
||||
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
||||
@@ -149,9 +150,11 @@ static RankedTensorType getUnorderedCOOFromType(RankedTensorType src) {
|
||||
// TODO: Maybe pick the bitwidth based on input/output tensors (probably the
|
||||
// largest one among them) in the original operation instead of using the
|
||||
// default value.
|
||||
unsigned pointerBitWidth = encSrc ? encSrc.getPointerBitWidth() : 0;
|
||||
unsigned indexBitWidth = encSrc ? encSrc.getIndexBitWidth() : 0;
|
||||
auto enc = SparseTensorEncodingAttr::get(
|
||||
ctx, dims, AffineMap::getMultiDimIdentityMap(rank, ctx), AffineMap(),
|
||||
encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
|
||||
pointerBitWidth, indexBitWidth);
|
||||
return RankedTensorType::get(src.getShape(), src.getElementType(), enc);
|
||||
}
|
||||
|
||||
@@ -428,10 +431,24 @@ struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> {
|
||||
PatternRewriter &rewriter) const override {
|
||||
auto loc = op.getLoc();
|
||||
auto rtp = op.getType().cast<RankedTensorType>();
|
||||
// TODO: Build the output shape if needed.
|
||||
assert(rtp.hasStaticShape());
|
||||
auto rank = rtp.getRank();
|
||||
size_t conDim = op.getDimension().getZExtValue();
|
||||
SmallVector<Value> dynSizes;
|
||||
if (!rtp.hasStaticShape()) {
|
||||
ArrayRef<int64_t> rShape = rtp.getShape();
|
||||
for (const auto &d : llvm::enumerate(rShape)) {
|
||||
if (d.value() == ShapedType::kDynamicSize) {
|
||||
Value v =
|
||||
createOrFoldDimOp(rewriter, loc, op.getOperand(0), d.index());
|
||||
rewriter.create<tensor::DimOp>(loc, op.getOperand(0), d.index());
|
||||
for (const auto &opnd : op.getOperands().drop_front()) {
|
||||
Value t = createOrFoldDimOp(rewriter, loc, opnd, d.index());
|
||||
v = rewriter.create<arith::AddIOp>(loc, v, t);
|
||||
}
|
||||
dynSizes.push_back(v);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// %t = concatenate %s1, %s2, %s3 {dim = 1}
|
||||
// ==>
|
||||
// %tmp = bufferization.alloc_tensor : unordered COO
|
||||
@@ -441,13 +458,11 @@ struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> {
|
||||
// %t = sparse_tensor.cast %tmp
|
||||
auto cooTp = getUnorderedCOOFromType(rtp);
|
||||
auto cooBuffer =
|
||||
rewriter.create<AllocTensorOp>(loc, cooTp, ValueRange()).getResult();
|
||||
|
||||
rewriter.create<AllocTensorOp>(loc, cooTp, dynSizes).getResult();
|
||||
auto rank = rtp.getRank();
|
||||
Value offset = constantIndex(rewriter, loc, 0);
|
||||
ForeachOp foreachOp;
|
||||
for (Value input : op.getInputs()) {
|
||||
// Builds the indexing map.
|
||||
|
||||
// Build a for op for each input tensor to append new values into the
|
||||
// output tensor.
|
||||
foreachOp = rewriter.create<ForeachOp>(
|
||||
@@ -462,8 +477,16 @@ struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> {
|
||||
idx = builder.create<arith::AddIOp>(loc, idx, offset);
|
||||
indices.push_back(idx);
|
||||
}
|
||||
auto t = builder.create<InsertOp>(loc, v, reduc.front(), indices);
|
||||
builder.create<sparse_tensor::YieldOp>(loc, t);
|
||||
Value cond = genIsNonzero(rewriter, loc, v);
|
||||
scf::IfOp ifOp = builder.create<scf::IfOp>(
|
||||
loc, TypeRange(reduc.front().getType()), cond, /*else*/ true);
|
||||
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
||||
Value t = builder.create<InsertOp>(loc, v, reduc.front(), indices);
|
||||
rewriter.create<scf::YieldOp>(loc, t);
|
||||
rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
||||
rewriter.create<scf::YieldOp>(loc, reduc.front());
|
||||
rewriter.setInsertionPointAfter(ifOp);
|
||||
rewriter.create<sparse_tensor::YieldOp>(loc, ifOp.getResult(0));
|
||||
});
|
||||
// Accumulates the offset. Note that only static-shaped inputs are allowed
|
||||
// by concatenate op verifier, which saves us from computing the offset
|
||||
@@ -659,7 +682,7 @@ private:
|
||||
for (uint64_t i = 0; i < rank; i++) {
|
||||
uint64_t orgDim = toOrigDim(encSrc, i);
|
||||
xs[toStoredDim(encDst, orgDim)] = rewriter.create<ToIndicesOp>(
|
||||
loc, indTp, src, rewriter.getIndexAttr(orgDim));
|
||||
loc, indTp, src, rewriter.getIndexAttr(i));
|
||||
}
|
||||
|
||||
// Retrieve NNZ.
|
||||
|
||||
Reference in New Issue
Block a user