[mlir][xegpu] add support for structure control flow ops in workgroup to subgroup distribution (#142618)

This PR introduces support for `scf::ForOp`, `scf::WhileOp`, `scf::If`,
and `scf::Condition` within the workgroup-subgroup-distribution pass,
leveraging the `SCFStructuralTypeConversionsAndLegality`.
This commit is contained in:
Chao Chen
2025-06-13 12:32:46 -05:00
committed by GitHub
parent 51689c9df2
commit 5578bcbcfd
5 changed files with 430 additions and 31 deletions

View File

@@ -26,6 +26,9 @@ class TensorDescType;
namespace xegpu {
/// Flatten a set of ValueRange into a single SmallVector<Value>
SmallVector<Value> flattenValues(ArrayRef<ValueRange> values);
/// If tensor descriptor has a layout attribute it is used in SIMT mode.
/// In this mode, the distributed vector shape is determined as follows:
/// Definitions:

View File

@@ -13,9 +13,11 @@
#include "mlir/Dialect/Index/IR/IndexDialect.h"
#include "mlir/Dialect/Index/IR/IndexOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/XeGPU/IR/XeGPU.h"
#include "mlir/Dialect/XeGPU/Transforms/Transforms.h"
#include "mlir/Dialect/XeGPU/Utils/XeGPUUtils.h"
#include "mlir/Transforms/DialectConversion.h"
namespace mlir {
@@ -29,6 +31,29 @@ using namespace mlir;
namespace {
static std::pair<SmallVector<int64_t>, int>
getSgShapeAndCount(ArrayRef<int64_t> shape, xegpu::LayoutAttr layout) {
int count = 1;
SmallVector<int64_t> sgShape(shape);
if (layout && layout.isWgLayout()) {
DenseI32ArrayAttr sgLayoutAttr = layout.getSgLayout();
auto sgLayout = llvm::to_vector_of<int64_t>(sgLayoutAttr.asArrayRef());
if (DenseI32ArrayAttr sgDataAttr = layout.getSgData())
sgShape = llvm::to_vector_of<int64_t>(sgDataAttr.asArrayRef());
else
sgShape = computeShapeRatio(shape, sgLayout).value_or(sgShape);
SmallVector<int64_t> distUnit = computeElementwiseMul(sgLayout, sgShape);
// Clamp distUnit to the original shape to handle cases where data is
// shared among subgroups, which may cause distUnit to exceed the original
// shape.
for (size_t i = 0; i < distUnit.size(); ++i)
distUnit[i] = std::min(shape[i], distUnit[i]);
count = computeProduct(shape) / computeProduct(distUnit);
}
return std::make_pair(sgShape, count);
}
/// This pattern transforms the CreateNdDescOp to create a subgroup descriptor
/// from a workgroup descriptor. It replaces the offsets and sizes with
/// appropriate values for the subgroup.
@@ -129,18 +154,7 @@ struct WgToSgCreateNdOp : public OpConversionPattern<xegpu::CreateNdDescOp> {
return rewriter.notifyMatchFailure(
op, "sgLayout attribute is required in layout");
SmallVector<int64_t> sgShape;
if (auto sgDataAttr = layout.getSgData()) {
sgShape = llvm::to_vector_of<int64_t>(sgDataAttr.asArrayRef());
} else {
assert(wgShape.size() == sgLayout.size() &&
"sgLayout and wgShape must have the same rank");
sgShape.reserve(wgShape.size());
for (size_t i = 0; i < wgShape.size(); ++i) {
assert(sgLayout[i] != 0 && "sgLayout elements must be non-zero");
sgShape.push_back(wgShape[i] / sgLayout[i]);
}
}
SmallVector<int64_t> sgShape = getSgShapeAndCount(wgShape, layout).first;
// TODO : Handle order attribute
// Get the subgroup ID
@@ -266,15 +280,15 @@ struct WgToSgDpasOp : public OpConversionPattern<xegpu::DpasOp> {
if (resultTy.getRank() != 2)
return failure();
auto originalLayout =
llvm::dyn_cast_or_null<xegpu::LayoutAttr>(op->getAttr("layout"));
auto originalLayout = xegpu::getLayoutAttr(op.getResult());
if (!originalLayout)
return failure();
SmallVector<Value> newDpasOps;
size_t i = 0;
SmallVector<Value> newDpasOps;
for (auto aVec : adaptor.getLhs()) {
for (auto bVec : adaptor.getRhs()) {
llvm::SmallVector<Value> operands({aVec, bVec});
Value tmpC;
if (op.getAcc()) {
@@ -288,10 +302,10 @@ struct WgToSgDpasOp : public OpConversionPattern<xegpu::DpasOp> {
llvm::cast<VectorType>(bVec.getType()).getShape();
VectorType resTy = VectorType::get({aVecShape[0], bVecShape[1]},
resultTy.getElementType());
tmpC = rewriter.create<xegpu::DpasOp>(
loc, resTy, operands,
llvm::ArrayRef<NamedAttribute>(
{"layout_result_0", originalLayout.dropSgLayoutAndData()}));
tmpC = rewriter.create<xegpu::DpasOp>(loc, resTy, operands);
xegpu::setLayoutAttr(cast<OpResult>(tmpC),
originalLayout.dropSgLayoutAndData());
newDpasOps.push_back(tmpC);
}
}
@@ -314,14 +328,90 @@ struct WgToSgPrefetchNdOp : public OpConversionPattern<xegpu::PrefetchNdOp> {
}
};
// Handles UnrealizedConversionCastOp generated during
// SCFStructuralTypeConversions (step 1). This op may appear as either a
// target or source materialization for Vector values, e.g.:
// 1. unrealized_cast %1 : vector<256xf32> to vector<16xf32>, ...
// 2. unrealized_cast %1 : vector<16xf32>, ... to vector<256xf32>
// it could be either 1:N or N:1 cast. In both cases, the pattern
// simply forwards the inputs to the outputs using 1:1 or 1:N interface.
// for example, the following scf::forOp
// ```
// %for = scf.for ... iter_args(%arg1 = %0)->(vector<128x128xf16>) {
// %n = use(%arg1): vector<128x128xf16>
// scf.yield %n : vector<128x128xf16>
// }
// ```
// Could be converted to:
// ```
// %1 = unrealized_conversion_cast %0
// : vector<128x128xf16> to vector<16x16xf16>, vector<16x16xf16>
// %for:2 = scf.for ... iter_args(%arg1 = %1#1, %arg2 = %1#2)
// -> (vector<16x16xf16>, vector<16x16xf16) {
// %m = unrealized_conversion_cast %arg1, %arg2
// : vector<16x16xf16>, vector<16x16xf16> to vector<128x128xf16>
// %n = use(%m): vector<128x128xf16>
// %b = unrealized_conversion_cast %n
// : vector<128x128xf16> to vector<16x16xf16>, vector<16x16xf16>
// scf.yield %b#1, %b#2 : vector<16x16xf16>, vector<16x16xf16>
// }
// %cast = unrealized_conversion_cast %for:2
// : vector<16x16xf16>, vector<16x16xf16> to vector<128x128xf16>
// ```
// TODO: remove it when context-aware type converter is ready.
struct UnrealizedConversionCastOpPattern
: public OpConversionPattern<mlir::UnrealizedConversionCastOp> {
using OpConversionPattern<
mlir::UnrealizedConversionCastOp>::OpConversionPattern;
mlir::LogicalResult
matchAndRewrite(mlir::UnrealizedConversionCastOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SmallVector<Value> inputs = xegpu::flattenValues(adaptor.getInputs());
auto inputTy = dyn_cast<VectorType>(inputs[0].getType());
auto outputTy = dyn_cast<VectorType>(op->getOpResult(0).getType());
if (!inputTy || !outputTy || !llvm::all_equal(op->getResultTypes()) ||
!llvm::all_equal(ValueRange(inputs).getTypes()))
return failure();
// Handles the case "cast %1 : vector<256xf32> to vector<16xf32>, ...".
// It is generated by source materialization (e.g., inits to scf forOp).
// The input values provided by the adaptor should already be distributed,
// and their types should correspond exactly to the result types of the
// operation.
if (op.getNumOperands() == 1 &&
llvm::equal(ValueRange(inputs).getTypes(), op->getResultTypes())) {
rewriter.replaceOp(op, inputs);
return success();
}
// Handles the case "cast %1 : vector<16xf32>, ... to vector<256xf32>".
// It is generated by target materialization (e.g., arguments/results
// of scf forOp). All input values must have the same vector type, and
// their shape must be evenly divisible by the output vector's shape
// (determined by the nature of the workgroup to subgroup distribution).
// TODO: it is not safe to do such forward, since such N:1 cast could be
// from others.
if (op.getNumResults() == 1 &&
computeShapeRatio(outputTy.getShape(), inputTy.getShape())) {
rewriter.replaceOpWithMultiple(op, {inputs});
return success();
}
return mlir::failure();
}
};
} // namespace
namespace mlir {
namespace xegpu {
void populateXeGPUWgToSgDistributePatterns(RewritePatternSet &patterns) {
patterns.add<WgToSgCreateNdOp, WgToSgLoadNdOp, WgToSgStoreNdOp,
WgToSgUpdateNdOffsetOp, WgToSgDpasOp, WgToSgPrefetchNdOp>(
patterns.getContext());
WgToSgUpdateNdOffsetOp, WgToSgDpasOp, WgToSgPrefetchNdOp,
UnrealizedConversionCastOpPattern>(patterns.getContext());
}
} // namespace xegpu
} // namespace mlir
@@ -334,9 +424,68 @@ struct XeGPUWgToSgDistributePass
} // namespace
void XeGPUWgToSgDistributePass::runOnOperation() {
// Track existing UnrealizedConversionCastOps
SmallVector<Operation *> existingCastOps;
getOperation()->walk([&](UnrealizedConversionCastOp castOp) {
existingCastOps.push_back(castOp.getOperation());
});
{
// Step 1: Apply SCFStructuralTypeConversions to SCF operations with
// VectorType operands. This first converts such operands to
// RankedTensorType, propagates the layout attribute into the encoding
// attribute, and finally converts the RankedTensorType to VectorType based
// on the encoding.
TypeConverter converter;
converter.addConversion([&](Type type) -> Type { return type; });
converter.addConversion(
[&](RankedTensorType type,
SmallVectorImpl<Type> &result) -> std::optional<LogicalResult> {
Type elemTy = type.getElementType();
ArrayRef<int64_t> shape = type.getShape();
int count;
SmallVector<int64_t> subShape;
std::tie(subShape, count) = getSgShapeAndCount(
shape,
dyn_cast_if_present<xegpu::LayoutAttr>(type.getEncoding()));
auto newTy = VectorType::get(subShape, elemTy);
result.append(count, newTy);
return success();
});
xegpu::doSCFStructuralTypeConversionWithTensorType(getOperation(),
converter);
}
// Step 2: Perform workgroup to subgroup distribution for TensorDesc values,
// as well as XeGPU, Arith, and Vector operations.
MLIRContext *ctx = &getContext();
RewritePatternSet patterns(ctx);
ConversionTarget target(*ctx);
TypeConverter converter;
converter.addConversion([&](Type type) -> Type { return type; });
converter.addConversion(
[&](xegpu::TensorDescType type,
SmallVectorImpl<Type> &result) -> std::optional<LogicalResult> {
Type elemTy = type.getElementType();
ArrayRef<int64_t> shape = type.getShape();
int count;
SmallVector<int64_t> subShape;
xegpu::LayoutAttr layout = type.getLayoutAttr();
std::tie(subShape, count) = getSgShapeAndCount(shape, layout);
if (layout)
layout = layout.dropSgLayoutAndData();
auto newTy = xegpu::TensorDescType::get(
type.getContext(), subShape, elemTy, type.getEncoding(), layout);
result.append(count, newTy);
return success();
});
auto getTensorDescType = [](Operation *op) -> xegpu::TensorDescType {
if (auto createOp = dyn_cast<xegpu::CreateNdDescOp>(op))
@@ -353,26 +502,49 @@ void XeGPUWgToSgDistributePass::runOnOperation() {
};
auto isLegal = [&](xegpu::LayoutAttr layout) -> bool {
return !layout || layout.getSgLayout() == nullptr;
return !layout || !layout.isWgLayout();
};
target.addDynamicallyLegalOp<xegpu::CreateNdDescOp, xegpu::LoadNdOp,
xegpu::StoreNdOp, xegpu::UpdateNdOffsetOp,
xegpu::PrefetchNdOp>([=](Operation *op) -> bool {
auto tdescTy = getTensorDescType(op);
auto layout = dyn_cast_or_null<xegpu::LayoutAttr>(tdescTy.getLayout());
auto layout = dyn_cast_if_present<xegpu::LayoutAttr>(tdescTy.getLayout());
return isLegal(layout);
});
target.addDynamicallyLegalOp<xegpu::DpasOp>([=](xegpu::DpasOp op) -> bool {
auto layout = dyn_cast_or_null<xegpu::LayoutAttr>(op->getAttr("layout"));
auto layout = xegpu::getLayoutAttr(op.getResult());
return isLegal(layout);
});
target.addDynamicallyLegalOp<UnrealizedConversionCastOp>(
[=](UnrealizedConversionCastOp op) {
return llvm::is_contained(existingCastOps, op.getOperation());
});
target.markUnknownOpDynamicallyLegal([](Operation *) { return true; });
scf::populateSCFStructuralTypeConversionsAndLegality(converter, patterns,
target);
xegpu::populateXeGPUWgToSgDistributePatterns(patterns);
if (failed(
applyPartialConversion(getOperation(), target, std::move(patterns))))
return signalPassFailure();
// Remove sg_layout and sg_data attributes from the Layout
// attribute for each VectorType result of the operation.
// For Structured Control Flow ops, the layout is simply removed,
// since in 1:N case, the layout for new results are missing.
// Layout propagation pass will activated.
getOperation()->walk([](Operation *op) {
for (OpResult result : op->getOpResults()) {
std::string name = xegpu::getLayoutName(result);
if (auto layout = op->getAttrOfType<xegpu::LayoutAttr>(name)) {
op->removeAttr(name);
if (!isa<scf::IfOp, scf::ForOp, scf::WhileOp, scf::ConditionOp>(op))
op->setAttr(name, layout.dropSgLayoutAndData());
}
}
});
}

View File

@@ -27,7 +27,7 @@
using namespace mlir;
/// convert ArrayRef<ValueRange> into SmallVector<Value>
static SmallVector<Value> flattenValues(ArrayRef<ValueRange> values) {
SmallVector<Value> xegpu::flattenValues(ArrayRef<ValueRange> values) {
SmallVector<Value> result;
for (const auto &vals : values)
llvm::append_range(result, vals);
@@ -271,7 +271,7 @@ void xegpu::doSCFStructuralTypeConversionWithTensorType(
auto resultTy = dyn_cast<RankedTensorType>(result.getType());
// Only look at ops casting from VectorType to RankedTensorType
if (!isa<VectorType>(inputTy) || !isa<RankedTensorType>(resultTy))
if (!inputTy || !resultTy)
return WalkResult::skip();
xegpu::LayoutAttr layout = xegpu::getLayoutAttr(input);
@@ -342,7 +342,7 @@ void xegpu::doSCFStructuralTypeConversionWithTensorType(
}
if (isa<RankedTensorType>(inputTy) && isa<VectorType>(outputTy)) {
SmallVector<Value> values = flattenValues(adaptor.getInputs());
SmallVector<Value> values = xegpu::flattenValues(adaptor.getInputs());
auto newOp = rewriter.create<UnrealizedConversionCastOp>(
op.getLoc(), outputTy, values);
rewriter.replaceOp(op, newOp);

View File

@@ -85,7 +85,7 @@ gpu.module @test_round_robin_assignment {
%tdesc_c = xegpu.create_nd_tdesc %c[0, 0] : memref<8x8xf32>
-> !xegpu.tensor_desc<8x8xf32, #xegpu.layout<sg_layout = [2, 2], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
%dpas = xegpu.dpas %load_a, %load_b
{layout = #xegpu.layout<sg_layout = [2, 2], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>}
{layout_result_0 = #xegpu.layout<sg_layout = [2, 2], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>}
: vector<8x8xf32>, vector<8x8xf32> -> vector<8x8xf32>
gpu.return
}
@@ -102,4 +102,100 @@ gpu.module @test_round_robin_assignment {
: !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [4, 4], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
gpu.return
}
gpu.func @test_scf_for(%arg0: memref<1024xf32>, %arg1: memref<1024xf32>) {
%c1 = arith.constant 1 : index
%c10 = arith.constant 10 : index
%c0 = arith.constant 0 : index
%c256 = arith.constant 256 : index
%c1024 = arith.constant 1024 : index
%0 = xegpu.create_nd_tdesc %arg0[0] : memref<1024xf32> -> !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
%1 = xegpu.create_nd_tdesc %arg1[0] : memref<1024xf32> -> !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
// CHECK-LABEL: scf.for
// CHECK-SAME: (!xegpu.tensor_desc<16xf32>, !xegpu.tensor_desc<16xf32>, !xegpu.tensor_desc<16xf32>, !xegpu.tensor_desc<16xf32>)
%2:2 = scf.for %arg2 = %c0 to %c1024 step %c256 iter_args(%arg3 = %0, %arg4 = %1)
-> (!xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>, !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>) {
%3 = xegpu.load_nd %0 : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>> -> vector<256xf32>
xegpu.store_nd %3, %arg3 : vector<256xf32>, !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
%4 = xegpu.update_nd_offset %arg3, [256] : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
%5 = xegpu.update_nd_offset %arg4, [256] : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
// CHECK-LABEL: scf.yield
// CHECK-SAME: !xegpu.tensor_desc<16xf32>, !xegpu.tensor_desc<16xf32>, !xegpu.tensor_desc<16xf32>, !xegpu.tensor_desc<16xf32>
scf.yield %4, %5 : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>, !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
}
gpu.return
}
gpu.func @test_scf_while_and_condition(%arg0: memref<1024xf32>, %arg1: memref<1024xf32>) {
%c1_i32 = arith.constant 1 : i32
%c10_i32 = arith.constant 10 : i32
%c0_i32 = arith.constant 0 : i32
%0 = xegpu.create_nd_tdesc %arg0[0] : memref<1024xf32> -> !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
%1 = xegpu.load_nd %0 : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>> -> vector<256xf32>
%2 = xegpu.create_nd_tdesc %arg1[0] : memref<1024xf32> -> !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
//CHECK: scf.while ({{.*}}) : (vector<16xf32>, vector<16xf32>, i32) -> (vector<16xf32>, vector<16xf32>, i32)
%3:2 = scf.while (%arg2 = %1, %arg3 = %c0_i32) : (vector<256xf32>, i32) -> (vector<256xf32>, i32) {
%4 = arith.cmpi slt, %arg3, %c10_i32 : i32
//CHECK: scf.condition{{.*}} : vector<16xf32>, vector<16xf32>, i32
scf.condition(%4) %arg2, %arg3 : vector<256xf32>, i32
} do {
// CHECK: ([[arg2:%.+]]: vector<16xf32>, [[arg3:%.+]]: vector<16xf32>, [[arg4:%.+]]: i32)
^bb0(%arg2: vector<256xf32>, %arg3: i32):
xegpu.store_nd %arg2, %2 : vector<256xf32>, !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
%4 = arith.addi %arg3, %c1_i32 : i32
%5 = xegpu.update_nd_offset %0, [256] : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
%6 = xegpu.load_nd %5 : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>> -> vector<256xf32>
scf.yield %6, %4 : vector<256xf32>, i32
}
gpu.return
}
gpu.func @test_scf_if(%arg0: memref<1024xf32>, %arg1: memref<1024xf32>) {
%c10 = arith.constant 10 : index
%0 = gpu.subgroup_id : index
%1 = xegpu.create_nd_tdesc %arg0[0] : memref<1024xf32> -> !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
%2 = xegpu.create_nd_tdesc %arg1[0] : memref<1024xf32> -> !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
%3 = arith.cmpi eq, %0, %c10 : index
// CHECK-LABEL: scf.if
// CHECK-SAME: (vector<16xf32>, vector<16xf32>)
%4 = scf.if %3 -> (vector<256xf32>) {
%5 = xegpu.load_nd %1 : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>> -> vector<256xf32>
// CHECK-LABEL: scf.yield
// CHECK-SAME: vector<16xf32>, vector<16xf32>
scf.yield %5 : vector<256xf32>
} else {
%5 = xegpu.load_nd %2 : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>> -> vector<256xf32>
// CHECK-LABEL: scf.yield
// CHECK-SAME: vector<16xf32>, vector<16xf32>
scf.yield %5 : vector<256xf32>
} {layout_result_0 = #xegpu.layout<sg_layout = [8], sg_data = [16]>}
xegpu.store_nd %4, %1 : vector<256xf32>, !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
gpu.return
}
gpu.func @test_scf_if_tensor_desc(%arg0: memref<1024xf32>, %arg1: memref<1024xf32>) {
%c10 = arith.constant 10 : index
%id = gpu.subgroup_id : index
%t = xegpu.create_nd_tdesc %arg0[0] : memref<1024xf32> -> !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
%d = xegpu.load_nd %t : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>> -> vector<256xf32>
%0 = arith.cmpi eq, %id, %c10 : index
// CHECK-LABEL: scf.if
// CHECK-SAME: (!xegpu.tensor_desc<16xf32>, !xegpu.tensor_desc<16xf32>)
%1 = scf.if %0 -> (!xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>) {
%2 = xegpu.create_nd_tdesc %arg0[0] : memref<1024xf32> -> !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
// CHECK-LABEL: scf.yield
// CHECK-SAME: !xegpu.tensor_desc<16xf32>, !xegpu.tensor_desc<16xf32>
scf.yield %2 : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
} else {
%3 = xegpu.create_nd_tdesc %arg1[0] : memref<1024xf32> -> !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
// CHECK-LABEL: scf.yield
// CHECK-SAME: !xegpu.tensor_desc<16xf32>, !xegpu.tensor_desc<16xf32>
scf.yield %3 : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
}
xegpu.store_nd %d, %1 : vector<256xf32>, !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [8], sg_data = [16]>>
gpu.return
}
}

View File

@@ -5,7 +5,7 @@
gpu.module @test_1_1_assignment {
// CHECK-LABEL: test_create_nd_tdesc
// CHECK-SAME: %[[ARG_0:.*]]: memref<24x32xf32>
gpu.func @test_create_nd_tdesc(%src: memref<24x32xf32>) {
gpu.func @test_create_nd_tdesc(%src: memref<24x32xf32>) {
// CHECK: %[[SGID:.*]] = gpu.subgroup_id
// CHECK: %[[C12:.*]] = arith.constant 12 : index
// CHECK: %[[C4:.*]] = arith.constant 4 : index
@@ -108,7 +108,7 @@ gpu.func @test_dpas(%a: memref<24x32xf32>, %b: memref<32x24xf32>) {
: !xegpu.tensor_desc<32x24xf32, #xegpu.layout<sg_layout = [4, 2], sg_data = [8, 12], lane_layout = [8, 2], lane_data = [1, 1]>>
-> vector<32x24xf32>
%dpas = xegpu.dpas %load_a, %load_b
{layout = #xegpu.layout<sg_layout = [2, 2], sg_data = [12, 12], lane_layout = [2, 2], lane_data = [1, 1]>}
{layout_result_0 = #xegpu.layout<sg_layout = [2, 2], sg_data = [12, 12], lane_layout = [2, 2], lane_data = [1, 1]>}
: vector<24x32xf32>, vector<32x24xf32> -> vector<24x24xf32>
gpu.return
}
@@ -142,7 +142,7 @@ gpu.func @test_dpas_no_sg_data(%a: memref<24x32xf32>, %b: memref<32x24xf32>) {
: !xegpu.tensor_desc<32x24xf32, #xegpu.layout<sg_layout = [4, 2], lane_layout = [8, 2], lane_data = [1, 1]>>
-> vector<32x24xf32>
%dpas = xegpu.dpas %load_a, %load_b
{layout = #xegpu.layout<sg_layout = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>}
{layout_result_0 = #xegpu.layout<sg_layout = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>}
: vector<24x32xf32>, vector<32x24xf32> -> vector<24x24xf32>
gpu.return
}
@@ -169,4 +169,132 @@ gpu.func @test_dpas_no_sg_data(%a: memref<24x32xf32>, %b: memref<32x24xf32>) {
: vector<24x32xf32>, vector<32x24xf32> -> vector<24x24xf32>
gpu.return
}
gpu.func @test_scf_for(%arg0: memref<1024x1024xf16>, %arg1: memref<1024x1024xf16>, %arg2: memref<1024x1024xf32>) {
//CHECK: [[c0:%.+]] = arith.constant 0 : index
//CHECK: [[c128:%.+]] = arith.constant 128 : index
//CHECK: [[c1024:%.+]] = arith.constant 1024 : index
%c0 = arith.constant 0 : index
%c128 = arith.constant 128 : index
%c1024 = arith.constant 1024 : index
%block_id_x = gpu.block_id x
%block_id_y = gpu.block_id y
%0 = arith.muli %block_id_x, %c128 : index
%1 = arith.muli %block_id_y, %c128 : index
%2 = xegpu.create_nd_tdesc %arg2[%0, %1] : memref<1024x1024xf32> -> !xegpu.tensor_desc<128x128xf32, #xegpu.layout<sg_layout = [8, 8], sg_data = [16, 16]>>
%3 = xegpu.load_nd %2 : !xegpu.tensor_desc<128x128xf32, #xegpu.layout<sg_layout = [8, 8], sg_data = [16, 16]>> -> vector<128x128xf32>
%4 = xegpu.create_nd_tdesc %arg0[%0, %c0] : memref<1024x1024xf16> -> !xegpu.tensor_desc<128x128xf16, #xegpu.layout<sg_layout = [8, 8], sg_data = [16, 128]>>
%5 = xegpu.create_nd_tdesc %arg1[%c0, %1] : memref<1024x1024xf16> -> !xegpu.tensor_desc<128x128xf16, #xegpu.layout<sg_layout = [8, 8], sg_data = [128, 16]>>
// CHECK: [[scf:%.+]]:3 = scf.for [[arg3:%.+]] = [[c0]] to [[c1024]] step [[c128]]
// CHECK-SAME: iter_args([[arg4:%.+]] = {{.*}}, [[arg5:%.+]] = {{.*}}, [[arg6:%.+]] = {{.*}}) ->
// CHECK-SAME: (!xegpu.tensor_desc<16x128xf16>, !xegpu.tensor_desc<128x16xf16>, vector<16x16xf32>)
// CHECK: [[a:%.+]] = xegpu.load_nd [[arg4]] : !xegpu.tensor_desc<16x128xf16> -> vector<16x128xf16>
// CHECK: [[b:%.+]] = xegpu.load_nd [[arg5]] : !xegpu.tensor_desc<128x16xf16> -> vector<128x16xf16>
// CHECK: [[c:%.+]] = xegpu.dpas [[a]], [[b]], [[arg6]] : vector<16x128xf16>, vector<128x16xf16>, vector<16x16xf32> -> vector<16x16xf32>
// CHECK: [[at:%.+]] = xegpu.update_nd_offset [[arg4]], [[[c0]], [[c128]]] : !xegpu.tensor_desc<16x128xf16>
// CHECK: [[bt:%.+]] = xegpu.update_nd_offset [[arg5]], [[[c128]], [[c0]]] : !xegpu.tensor_desc<128x16xf16>
// CHECK: scf.yield [[at]], [[bt]], [[c]] : !xegpu.tensor_desc<16x128xf16>, !xegpu.tensor_desc<128x16xf16>, vector<16x16xf32>
%6:3 = scf.for %arg3 = %c0 to %c1024 step %c128 iter_args(%arg4 = %4, %arg5 = %5, %arg6 = %3)
-> (!xegpu.tensor_desc<128x128xf16, #xegpu.layout<sg_layout = [8, 8], sg_data = [16, 128]>>,
!xegpu.tensor_desc<128x128xf16, #xegpu.layout<sg_layout = [8, 8], sg_data = [128, 16]>>, vector<128x128xf32>) {
%8 = xegpu.load_nd %arg4 : !xegpu.tensor_desc<128x128xf16, #xegpu.layout<sg_layout = [8, 8], sg_data = [16, 128]>> -> vector<128x128xf16>
%9 = xegpu.load_nd %arg5 : !xegpu.tensor_desc<128x128xf16, #xegpu.layout<sg_layout = [8, 8], sg_data = [128, 16]>> -> vector<128x128xf16>
%10 = xegpu.dpas %8, %9, %arg6 {layout_result_0 = #xegpu.layout<sg_layout = [8, 8], sg_data = [16, 16]>}
: vector<128x128xf16>, vector<128x128xf16>, vector<128x128xf32> -> vector<128x128xf32>
%11 = xegpu.update_nd_offset %arg4, [%c0, %c128] : !xegpu.tensor_desc<128x128xf16, #xegpu.layout<sg_layout = [8, 8], sg_data = [16, 128]>>
%12 = xegpu.update_nd_offset %arg5, [%c128, %c0] : !xegpu.tensor_desc<128x128xf16, #xegpu.layout<sg_layout = [8, 8], sg_data = [128, 16]>>
scf.yield %11, %12, %10 : !xegpu.tensor_desc<128x128xf16, #xegpu.layout<sg_layout = [8, 8], sg_data = [16, 128]>>,
!xegpu.tensor_desc<128x128xf16, #xegpu.layout<sg_layout = [8, 8], sg_data = [128, 16]>>, vector<128x128xf32>
}
%7 = xegpu.create_nd_tdesc %arg2[%0, %1] : memref<1024x1024xf32>
-> !xegpu.tensor_desc<128x128xf32, #xegpu.layout<sg_layout = [8, 8], sg_data = [16, 16]>>
xegpu.store_nd %6#2, %7 : vector<128x128xf32>, !xegpu.tensor_desc<128x128xf32, #xegpu.layout<sg_layout = [8, 8], sg_data = [16, 16]>>
gpu.return
}
gpu.func @test_scf_while_and_condition(%arg0: memref<1024xf32>, %arg1: memref<1024xf32>) {
%c1_i32 = arith.constant 1 : i32
%c10_i32 = arith.constant 10 : i32
%c0_i32 = arith.constant 0 : i32
%0 = xegpu.create_nd_tdesc %arg0[0] : memref<1024xf32> -> !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>>
%1 = xegpu.load_nd %0 : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>> -> vector<256xf32>
%2 = xegpu.create_nd_tdesc %arg1[0] : memref<1024xf32> -> !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>>
// CHECK: scf.while {{.*}} : (vector<16xf32>, i32) -> (vector<16xf32>, i32)
%3:2 = scf.while (%arg2 = %1, %arg3 = %c0_i32) : (vector<256xf32>, i32) -> (vector<256xf32>, i32) {
%4 = arith.cmpi slt, %arg3, %c10_i32 : i32
// CHECK: scf.condition{{.*}} : vector<16xf32>, i32
scf.condition(%4) %arg2, %arg3 : vector<256xf32>, i32
} do {
// CHECK: ([[arg2:%.+]]: vector<16xf32>, [[arg3:%.+]]: i32)
^bb0(%arg2: vector<256xf32>, %arg3: i32):
xegpu.store_nd %arg2, %2 : vector<256xf32>, !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>>
%4 = arith.addi %arg3, %c1_i32 : i32
%5 = xegpu.update_nd_offset %0, [256] : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>>
%6 = xegpu.load_nd %5 : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>> -> vector<256xf32>
scf.yield %6, %4 : vector<256xf32>, i32
}
gpu.return
}
gpu.func @test_scf_if(%arg0: memref<1024xf32>, %arg1: memref<1024xf32>) {
%c10 = arith.constant 10 : index
%id = gpu.subgroup_id : index
%0 = xegpu.create_nd_tdesc %arg0[0] : memref<1024xf32> -> !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>>
%1 = xegpu.create_nd_tdesc %arg1[0] : memref<1024xf32> -> !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>>
%4 = arith.cmpi eq, %id, %c10 : index
// CHECK-LABEL: scf.if
// CHECK-SAME: (vector<16xf32>)
%5 = scf.if %4 -> (vector<256xf32>) {
// CHECK-LABEL: xegpu.load_nd
// CHECK-SAME: !xegpu.tensor_desc<16xf32> -> vector<16xf32>
%2 = xegpu.load_nd %0 : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>> -> vector<256xf32>
// CHECK-LABEL: scf.yield
// CHECK-SAME: vector<16xf32>
scf.yield %2 : vector<256xf32>
} else {
// CHECK-LABEL: xegpu.load_nd
// CHECK-SAME: !xegpu.tensor_desc<16xf32> -> vector<16xf32>
%3 = xegpu.load_nd %1 : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>> -> vector<256xf32>
// CHECK-LABEL: scf.yield
// CHECK-SAME: vector<16xf32>
scf.yield %3 : vector<256xf32>
} {layout_result_0 = #xegpu.layout<sg_layout = [16], sg_data = [16]>}
xegpu.store_nd %5, %0 : vector<256xf32>, !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>>
gpu.return
}
gpu.func @test_scf_if_tensor_desc(%arg0: memref<1024xf32>, %arg1: memref<1024xf32>) {
%c10 = arith.constant 10 : index
%id = gpu.subgroup_id : index
%t = xegpu.create_nd_tdesc %arg0[0] : memref<1024xf32> -> !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>>
%d = xegpu.load_nd %t : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>> -> vector<256xf32>
%0 = arith.cmpi eq, %id, %c10 : index
// CHECK-LABEL: scf.if
// CHECK-SAME: (!xegpu.tensor_desc<16xf32>)
%1 = scf.if %0 -> (!xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>>) {
// CHECK-LABEL: xegpu.create_nd_tdesc
// CHECK-SAME: memref<1024xf32> -> !xegpu.tensor_desc<16xf32>
%2 = xegpu.create_nd_tdesc %arg0[0] : memref<1024xf32> -> !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>>
// CHECK-LABEL: scf.yield
// CHECK-SAME: !xegpu.tensor_desc<16xf32>
scf.yield %2 : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>>
} else {
// CHECK-LABEL: xegpu.create_nd_tdesc
// CHECK-SAME: memref<1024xf32> -> !xegpu.tensor_desc<16xf32>
%3 = xegpu.create_nd_tdesc %arg1[0] : memref<1024xf32> -> !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>>
// CHECK-LABEL: scf.yield
// CHECK-SAME: !xegpu.tensor_desc<16xf32>
scf.yield %3 : !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>>
}
xegpu.store_nd %d, %1 : vector<256xf32>, !xegpu.tensor_desc<256xf32, #xegpu.layout<sg_layout = [16], sg_data = [16]>>
gpu.return
}
}