[mlir][tosa] Fix padding for tosa.conv2d and tosa.depthwise_conv2d decomposition
Decomposition did not take padding into account when decomposing into fully connected operation. Reviewed By: NatashaKnk Differential Revision: https://reviews.llvm.org/D139500
This commit is contained in:
@@ -38,6 +38,9 @@ Value clampFloatHelper(Location loc, Value arg, Value min, Value max,
|
||||
Value clampIntHelper(Location loc, Value arg, Value min, Value max,
|
||||
OpBuilder &rewriter);
|
||||
|
||||
// Determines whether the integer value falls witin the range of integer type.
|
||||
bool validIntegerRange(IntegerType ty, int64_t value);
|
||||
|
||||
// Returns the values in an attribute as an array of values.
|
||||
template <typename T>
|
||||
void getValuesFromIntArrayAttribute(ArrayAttr attr,
|
||||
|
||||
@@ -13,6 +13,7 @@
|
||||
|
||||
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
|
||||
#include "mlir/Dialect/Tosa/Transforms/Passes.h"
|
||||
#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::tosa;
|
||||
@@ -56,6 +57,49 @@ struct Conv2DIsFullyConnected : public OpRewritePattern<tosa::Conv2DOp> {
|
||||
if (weightShape[1] != 1 || weightShape[2] != 1)
|
||||
return failure();
|
||||
|
||||
auto padAttr = op.getPad();
|
||||
llvm::SmallVector<int64_t> pad(8, 0);
|
||||
for (auto it : llvm::enumerate(padAttr.getValue()))
|
||||
pad[it.index() + 2] =
|
||||
it.value().cast<IntegerAttr>().getValue().getSExtValue();
|
||||
|
||||
if (llvm::any_of(pad, [](int64_t p) { return p != 0; })) {
|
||||
Type inputETy = inputType.getElementType();
|
||||
Attribute zeroAttr = rewriter.getZeroAttr(inputETy);
|
||||
if (op.getQuantizationInfo()) {
|
||||
auto quantizationInfo = op.getQuantizationInfo();
|
||||
int64_t iZp = quantizationInfo->getInputZp();
|
||||
|
||||
if (!validIntegerRange(inputETy.cast<IntegerType>(), iZp))
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "tosa.conv op quantization has zp outside of input range");
|
||||
|
||||
zeroAttr = rewriter.getIntegerAttr(inputETy, iZp);
|
||||
}
|
||||
|
||||
llvm::SmallVector<int64_t> newShape(inputType.getShape());
|
||||
|
||||
for (int i = 0, s = newShape.size(); i < s; ++i) {
|
||||
if (newShape[i] != ShapedType::kDynamic) {
|
||||
newShape[i] += pad[i * 2] + pad[i * 2 + 1];
|
||||
}
|
||||
}
|
||||
|
||||
auto padSizeTy = RankedTensorType::get({4, 2}, rewriter.getI64Type());
|
||||
auto padSize =
|
||||
DenseIntElementsAttr::get(padSizeTy, ArrayRef<int64_t>(pad));
|
||||
Value padSizeVal =
|
||||
rewriter.create<tosa::ConstOp>(op->getLoc(), padSizeTy, padSize);
|
||||
|
||||
auto padTy = RankedTensorType::get({}, inputETy);
|
||||
auto padAttr = DenseElementsAttr::get(padTy, zeroAttr);
|
||||
Value padVal =
|
||||
rewriter.create<tosa::ConstOp>(op->getLoc(), padTy, padAttr);
|
||||
inputType = RankedTensorType::get(newShape, inputETy);
|
||||
input = rewriter.create<tosa::PadOp>(op->getLoc(), inputType, input,
|
||||
padSizeVal, padVal);
|
||||
}
|
||||
|
||||
// Reshape input to [N,IH,IW,IC] -> [N * IH * IW, IC].
|
||||
ArrayRef<int64_t> inputShape = inputType.getShape();
|
||||
int64_t combined = ShapedType::kDynamic;
|
||||
|
||||
@@ -31,18 +31,12 @@ struct DepthwiseConv2DIsMul : public OpRewritePattern<tosa::DepthwiseConv2DOp> {
|
||||
ShapedType inputType = input.getType().cast<ShapedType>();
|
||||
ShapedType weightType = weight.getType().cast<ShapedType>();
|
||||
ShapedType resultType = op.getOutput().getType().cast<ShapedType>();
|
||||
Type inputEType = inputType.getElementType();
|
||||
|
||||
if (!(inputType.hasStaticShape() && weightType.hasStaticShape() &&
|
||||
resultType.hasStaticShape())) {
|
||||
return failure();
|
||||
}
|
||||
|
||||
// Quantization information needs to still be performed.
|
||||
if (op.getQuantizationInfo() || !inputEType.isa<FloatType>()) {
|
||||
return failure();
|
||||
}
|
||||
|
||||
// Stride must be 1 for this optimization.
|
||||
for (Attribute stride : op.getStride().getValue()) {
|
||||
if (!stride.cast<IntegerAttr>().getValue().isOne()) {
|
||||
@@ -60,39 +54,88 @@ struct DepthwiseConv2DIsMul : public OpRewritePattern<tosa::DepthwiseConv2DOp> {
|
||||
ArrayRef<int64_t> inputShape = inputType.getShape();
|
||||
llvm::SmallVector<int64_t, 2> revisedInputShape{
|
||||
inputShape[0], inputShape[1], inputShape[2], inputShape[3], 1};
|
||||
auto revisedInputShapeType = RankedTensorType::get(
|
||||
inputType = RankedTensorType::get(
|
||||
revisedInputShape,
|
||||
input.getType().dyn_cast<RankedTensorType>().getElementType());
|
||||
auto reshapedInput = rewriter
|
||||
.create<tosa::ReshapeOp>(
|
||||
op.getLoc(), revisedInputShapeType, input,
|
||||
rewriter.getI64ArrayAttr(revisedInputShape))
|
||||
.getResult();
|
||||
input = rewriter
|
||||
.create<tosa::ReshapeOp>(
|
||||
op.getLoc(), inputType, input,
|
||||
rewriter.getI64ArrayAttr(revisedInputShape))
|
||||
.getResult();
|
||||
|
||||
// Reshape kernel to [KH, KW, C, M] -> [1, 1, 1, C, M].
|
||||
llvm::SmallVector<int64_t, 2> revisedWeightShape{1, 1, 1, weightShape[2],
|
||||
weightShape[3]};
|
||||
auto revisedWeightShapeType = RankedTensorType::get(
|
||||
revisedWeightShape,
|
||||
weight.getType().dyn_cast<RankedTensorType>().getElementType());
|
||||
auto reshapedWeight = rewriter
|
||||
.create<tosa::ReshapeOp>(
|
||||
op.getLoc(), revisedWeightShapeType, weight,
|
||||
rewriter.getI64ArrayAttr(revisedWeightShape))
|
||||
.getResult();
|
||||
if (inputType.getElementType() != resultType.getElementType()) {
|
||||
inputType = inputType.clone(resultType.getElementType());
|
||||
input = rewriter.create<tosa::CastOp>(op.getLoc(), inputType, input);
|
||||
}
|
||||
|
||||
if (weightType.getElementType() != resultType.getElementType()) {
|
||||
weightType = weightType.clone(resultType.getElementType());
|
||||
weight = rewriter.create<tosa::CastOp>(op.getLoc(), weightType, weight);
|
||||
}
|
||||
|
||||
if (auto quantizationInfo = op.getQuantizationInfo()) {
|
||||
auto iZp = quantizationInfo->getInputZp();
|
||||
auto wZp = quantizationInfo->getWeightZp();
|
||||
|
||||
auto applyZp = [&](Value val, int64_t zp) -> Value {
|
||||
if (zp == 0)
|
||||
return val;
|
||||
auto ety = val.getType().cast<ShapedType>().getElementType();
|
||||
auto zpTy = RankedTensorType::get({}, ety);
|
||||
auto zpAttr =
|
||||
DenseElementsAttr::get(zpTy, rewriter.getIntegerAttr(ety, zp));
|
||||
auto zpVal = rewriter.create<tosa::ConstOp>(op.getLoc(), zpTy, zpAttr);
|
||||
return rewriter.create<tosa::SubOp>(op.getLoc(), val.getType(), val,
|
||||
zpVal);
|
||||
};
|
||||
|
||||
input = applyZp(input, iZp);
|
||||
weight = applyZp(weight, wZp);
|
||||
}
|
||||
|
||||
auto padAttr = op.getPad();
|
||||
llvm::SmallVector<int64_t> pad(10, 0);
|
||||
for (auto it : llvm::enumerate(padAttr.getValue()))
|
||||
pad[it.index() + 2] =
|
||||
it.value().cast<IntegerAttr>().getValue().getSExtValue();
|
||||
|
||||
if (llvm::any_of(pad, [](int64_t p) { return p != 0; })) {
|
||||
Type inputETy = inputType.getElementType();
|
||||
Attribute zeroAttr = rewriter.getZeroAttr(inputETy);
|
||||
|
||||
llvm::SmallVector<int64_t> newShape(inputType.getShape());
|
||||
for (int i = 0, s = pad.size(); i < s; ++i) {
|
||||
if (newShape[i / 2] != ShapedType::kDynamic) {
|
||||
newShape[i / 2] += pad[i];
|
||||
}
|
||||
}
|
||||
|
||||
auto padSizeTy = RankedTensorType::get({5, 2}, rewriter.getI64Type());
|
||||
auto padSize =
|
||||
DenseIntElementsAttr::get(padSizeTy, ArrayRef<int64_t>(pad));
|
||||
Value padSizeVal =
|
||||
rewriter.create<tosa::ConstOp>(op->getLoc(), padSizeTy, padSize);
|
||||
|
||||
auto padTy = RankedTensorType::get({}, inputETy);
|
||||
auto padAttr = DenseElementsAttr::get(padTy, zeroAttr);
|
||||
Value padVal =
|
||||
rewriter.create<tosa::ConstOp>(op->getLoc(), padTy, padAttr);
|
||||
inputType = RankedTensorType::get(newShape, inputETy);
|
||||
input = rewriter.create<tosa::PadOp>(op->getLoc(), inputType, input,
|
||||
padSizeVal, padVal);
|
||||
}
|
||||
|
||||
// Perform an elementwise mul over the reshaped input and weight.
|
||||
llvm::SmallVector<int64_t, 2> mulShape{inputShape[0], inputShape[1],
|
||||
inputShape[2], inputShape[3],
|
||||
weightShape[3]};
|
||||
llvm::SmallVector<int64_t, 2> mulShape{
|
||||
inputType.getDimSize(0), inputType.getDimSize(1),
|
||||
inputType.getDimSize(2), inputType.getDimSize(3), weightShape[3]};
|
||||
auto mulShapeType = RankedTensorType::get(
|
||||
mulShape,
|
||||
weight.getType().dyn_cast<RankedTensorType>().getElementType());
|
||||
Value mulValue =
|
||||
rewriter
|
||||
.create<tosa::MulOp>(op.getLoc(), mulShapeType, reshapedInput,
|
||||
reshapedWeight, /*shift=*/0)
|
||||
.getResult();
|
||||
Value mulValue = rewriter
|
||||
.create<tosa::MulOp>(op.getLoc(), mulShapeType, input,
|
||||
weight, /*shift=*/0)
|
||||
.getResult();
|
||||
|
||||
// Reshape output to [N, H, W, C * M].
|
||||
auto outputShape = op.getOutput().getType().cast<ShapedType>().getShape();
|
||||
|
||||
@@ -46,3 +46,17 @@ Value mlir::tosa::clampIntHelper(Location loc, Value arg, Value min, Value max,
|
||||
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, max, arg);
|
||||
return rewriter.create<arith::SelectOp>(loc, largerThanMax, max, minOrArg);
|
||||
}
|
||||
|
||||
bool mlir::tosa::validIntegerRange(IntegerType ty, int64_t value) {
|
||||
uint64_t bitwidth = ty.getIntOrFloatBitWidth();
|
||||
if (ty.getSignedness() == IntegerType::Unsigned) {
|
||||
uint64_t uvalue = value;
|
||||
APInt intMin = APInt::getMinValue(bitwidth);
|
||||
APInt intMax = APInt::getMaxValue(bitwidth);
|
||||
return uvalue >= intMin.getZExtValue() && uvalue <= intMax.getZExtValue();
|
||||
}
|
||||
|
||||
APInt intMin = APInt::getSignedMinValue(bitwidth);
|
||||
APInt intMax = APInt::getSignedMaxValue(bitwidth);
|
||||
return value >= intMin.getSExtValue() && value <= intMax.getSExtValue();
|
||||
}
|
||||
|
||||
@@ -54,3 +54,17 @@ func.func @conv_with_dynamic_dim(%arg0: tensor<?x14x14x64xi8>, %arg1: tensor<384
|
||||
return %0 : tensor<?x14x14x384xi32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @conv2d_as_fully_connected_padded
|
||||
func.func @conv2d_as_fully_connected_padded(%arg0: tensor<4x10x10x2xi8>, %arg1: tensor<3x1x1x2xi8>, %arg2: tensor<3xi32>) -> tensor<4x12x12x3xi32> {
|
||||
// CHECK-DAG: %[[PAD_SHAPE:.+]] = "tosa.const"() {value = dense<{{\[\[}}0, 0], [1, 1], [1, 1], [0, 0]]> : tensor<4x2xi64>}
|
||||
// CHECK-DAG: %[[PAD_VAL:.+]] = "tosa.const"() {value = dense<42> : tensor<i8>}
|
||||
// CHECK-DAG: %[[PAD:.+]] = "tosa.pad"(%arg0, %[[PAD_SHAPE]], %[[PAD_VAL]]) : (tensor<4x10x10x2xi8>, tensor<4x2xi64>, tensor<i8>) -> tensor<4x12x12x2xi8>
|
||||
// CHECK-DAG: %[[RESHAPE_INPUT:.+]] = "tosa.reshape"(%[[PAD]]) {new_shape = [576, 2]}
|
||||
// CHECK-DAG: %[[RESHAPE_FILTER:.+]] = "tosa.reshape"(%arg1) {new_shape = [3, 2]}
|
||||
// CHECK-DAG: %[[FULLY:.+]] = "tosa.fully_connected"(%[[RESHAPE_INPUT]], %[[RESHAPE_FILTER]], %arg2) {quantization_info = #tosa.conv_quant<input_zp = 42, weight_zp = 24>}
|
||||
// CHECK: %[[RESHAPE:.+]] = "tosa.reshape"(%[[FULLY]]) {new_shape = [4, 12, 12, 3]}
|
||||
%0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {pad = [1, 1, 1, 1], stride = [1, 1], dilation = [1, 1], quantization_info = #tosa.conv_quant<input_zp = 42, weight_zp = 24>} : (tensor<4x10x10x2xi8>, tensor<3x1x1x2xi8>, tensor<3xi32>) -> tensor<4x12x12x3xi32>
|
||||
return %0 : tensor<4x12x12x3xi32>
|
||||
}
|
||||
@@ -7,9 +7,7 @@ func.func @depthwise_conv2d_as_mul(%arg0: tensor<4x10x10x2xf32>, %arg1: tensor<1
|
||||
// CHECK-NOT: "tosa.depthwise_conv2d"
|
||||
// CHECK: %[[VAR0:.*]] = "tosa.reshape"(%arg0) {new_shape = [4, 10, 10, 2, 1]}
|
||||
// CHECK-SAME: -> tensor<4x10x10x2x1xf32>
|
||||
// CHECK: %[[VAR1:.*]] = "tosa.reshape"(%arg1) {new_shape = [1, 1, 1, 2, 3]}
|
||||
// CHECK-SAME: -> tensor<1x1x1x2x3xf32>
|
||||
// CHECK: %[[VAR2:.*]] = "tosa.mul"(%[[VAR0]], %[[VAR1]])
|
||||
// CHECK: %[[VAR2:.*]] = "tosa.mul"(%[[VAR0]], %arg1)
|
||||
// CHECK-SAME: -> tensor<4x10x10x2x3xf32>
|
||||
// CHECK: %[[VAR3:.*]] = "tosa.reshape"(%[[VAR2]]) {new_shape = [4, 10, 10, 6]}
|
||||
// CHECK-SAME: -> tensor<4x10x10x6xf32>
|
||||
@@ -24,9 +22,31 @@ func.func @depthwise_conv2d_as_mul(%arg0: tensor<4x10x10x2xf32>, %arg1: tensor<1
|
||||
|
||||
// CHECK-LABEL: @depthwise_conv2d_as_mul_q
|
||||
func.func @depthwise_conv2d_as_mul_q(%arg0: tensor<4x10x10x2xi8>, %arg1: tensor<1x1x2x3xi8>, %arg2: tensor<6xi32>) -> tensor<4x10x10x6xi32> {
|
||||
// CHECK: "tosa.depthwise_conv2d"
|
||||
%0 = "tosa.depthwise_conv2d"(%arg0, %arg1, %arg2) {pad = [0, 0, 0, 0], stride = [1, 1], dilation = [1, 1], quantization_info = #tosa.conv_quant<input_zp = 0, weight_zp = 0>} : (tensor<4x10x10x2xi8>, tensor<1x1x2x3xi8>, tensor<6xi32>) -> tensor<4x10x10x6xi32>
|
||||
// CHECK: %[[iZp:.+]] = "tosa.const"() {value = dense<7> : tensor<i32>}
|
||||
// CHECK: %[[wZp:.+]] = "tosa.const"() {value = dense<11> : tensor<i32>}
|
||||
// CHECK: %[[rIn:.+]] = "tosa.reshape"(%arg0) {new_shape = [4, 10, 10, 2, 1]}
|
||||
// CHECK: %[[cIn:.+]] = "tosa.cast"(%[[rIn]]) : (tensor<4x10x10x2x1xi8>) -> tensor<4x10x10x2x1xi32>
|
||||
// CHECK: %[[cWe:.+]] = "tosa.cast"(%arg1) : (tensor<1x1x2x3xi8>) -> tensor<1x1x2x3xi32>
|
||||
// CHECK: %[[sIn:.+]] = "tosa.sub"(%[[cIn]], %[[iZp]])
|
||||
// CHECK: %[[sWe:.+]] = "tosa.sub"(%[[cWe]], %[[wZp]])
|
||||
// CHECK: %[[mul:.+]] = "tosa.mul"(%[[sIn]], %[[sWe]]) {shift = 0 : i32}
|
||||
// CHECK: %[[reO:.+]] = "tosa.reshape"(%[[mul]]) {new_shape = [4, 10, 10, 6]}
|
||||
// CHECK: %[[add:.+]] = "tosa.add"(%[[reO]], %arg2)
|
||||
%0 = "tosa.depthwise_conv2d"(%arg0, %arg1, %arg2) {pad = [0, 0, 0, 0], stride = [1, 1], dilation = [1, 1], quantization_info = #tosa.conv_quant<input_zp = 7, weight_zp = 11>} : (tensor<4x10x10x2xi8>, tensor<1x1x2x3xi8>, tensor<6xi32>) -> tensor<4x10x10x6xi32>
|
||||
return %0 : tensor<4x10x10x6xi32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @depthwise_conv2d_as_mul_padded
|
||||
func.func @depthwise_conv2d_as_mul_padded(%arg0: tensor<4x10x10x2xf32>, %arg1: tensor<1x1x2x3xf32>, %arg2: tensor<6xf32>) -> tensor<4x12x12x6xf32> {
|
||||
// CHECK: %[[pad:.+]] = "tosa.const"() {value = dense<{{\[\[}}0, 0], [1, 1], [1, 1], [0, 0], [0, 0]]> : tensor<5x2xi64>}
|
||||
// CHECK: %[[zero:.+]] = "tosa.const"() {value = dense<0.000000e+00> : tensor<f32>}
|
||||
// CHECK: %[[reIn:.+]] = "tosa.reshape"(%arg0) {new_shape = [4, 10, 10, 2, 1]}
|
||||
// CHECK: %[[padded:.+]] = "tosa.pad"(%[[reIn]], %[[pad]], %[[zero]]) : (tensor<4x10x10x2x1xf32>, tensor<5x2xi64>, tensor<f32>) -> tensor<4x12x12x2x1xf32>
|
||||
// CHECK: %[[mul:.+]] = "tosa.mul"(%3, %arg1) {shift = 0 : i32}
|
||||
// CHECK: %[[reOut:.+]] = "tosa.reshape"(%[[mul]]) {new_shape = [4, 12, 12, 6]}
|
||||
// CHECK: %[[add:.+]] = "tosa.add"(%[[reOut]], %arg2)
|
||||
%0 = "tosa.depthwise_conv2d"(%arg0, %arg1, %arg2) {pad = [1, 1, 1, 1], stride = [1, 1], dilation = [1, 1]} : (tensor<4x10x10x2xf32>, tensor<1x1x2x3xf32>, tensor<6xf32>) -> tensor<4x12x12x6xf32>
|
||||
return %0 : tensor<4x12x12x6xf32>
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user