[mlir][SCF] Retire SCF-specific to_memref/to_tensor canonicalization patterns (#74551)
The partial bufferization framework has been replaced with One-Shot Bufferize. SCF-specific canonicalization patterns for `to_memref`/`to_tensor` are no longer needed.
This commit is contained in:
committed by
GitHub
parent
23d402e5b7
commit
77f5b33c46
@@ -11,12 +11,13 @@ add_mlir_dialect_library(MLIRSCFDialect
|
||||
|
||||
LINK_LIBS PUBLIC
|
||||
MLIRArithDialect
|
||||
MLIRBufferizationDialect
|
||||
MLIRControlFlowDialect
|
||||
MLIRDialectUtils
|
||||
MLIRFunctionInterfaces
|
||||
MLIRIR
|
||||
MLIRLoopLikeInterface
|
||||
MLIRSideEffectInterfaces
|
||||
MLIRTensorDialect
|
||||
MLIRValueBoundsOpInterface
|
||||
)
|
||||
|
||||
|
||||
@@ -9,7 +9,6 @@
|
||||
#include "mlir/Dialect/SCF/IR/SCF.h"
|
||||
#include "mlir/Dialect/Arith/IR/Arith.h"
|
||||
#include "mlir/Dialect/Arith/Utils/Utils.h"
|
||||
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
||||
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
||||
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
||||
#include "mlir/Dialect/SCF/IR/DeviceMappingInterface.h"
|
||||
@@ -1082,139 +1081,12 @@ struct ForOpTensorCastFolder : public OpRewritePattern<ForOp> {
|
||||
}
|
||||
};
|
||||
|
||||
/// Canonicalize the iter_args of an scf::ForOp that involve a
|
||||
/// `bufferization.to_tensor` and for which only the last loop iteration is
|
||||
/// actually visible outside of the loop. The canonicalization looks for a
|
||||
/// pattern such as:
|
||||
/// ```
|
||||
/// %t0 = ... : tensor_type
|
||||
/// %0 = scf.for ... iter_args(%bb0 : %t0) -> (tensor_type) {
|
||||
/// ...
|
||||
/// // %m is either buffer_cast(%bb00) or defined above the loop
|
||||
/// %m... : memref_type
|
||||
/// ... // uses of %m with potential inplace updates
|
||||
/// %new_tensor = bufferization.to_tensor %m : memref_type
|
||||
/// ...
|
||||
/// scf.yield %new_tensor : tensor_type
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
/// `%bb0` may have either 0 or 1 use. If it has 1 use it must be exactly a
|
||||
/// `%m = buffer_cast %bb0` op that feeds into the yielded
|
||||
/// `bufferization.to_tensor` op.
|
||||
///
|
||||
/// If no aliasing write to the memref `%m`, from which `%new_tensor`is loaded,
|
||||
/// occurs between `bufferization.to_tensor and yield then the value %0
|
||||
/// visible outside of the loop is the last `bufferization.to_tensor`
|
||||
/// produced in the loop.
|
||||
///
|
||||
/// For now, we approximate the absence of aliasing by only supporting the case
|
||||
/// when the bufferization.to_tensor is the operation immediately preceding
|
||||
/// the yield.
|
||||
//
|
||||
/// The canonicalization rewrites the pattern as:
|
||||
/// ```
|
||||
/// // %m is either a buffer_cast or defined above
|
||||
/// %m... : memref_type
|
||||
/// scf.for ... iter_args(%bb0 : %t0) -> (tensor_type) {
|
||||
/// ... // uses of %m with potential inplace updates
|
||||
/// scf.yield %bb0: tensor_type
|
||||
/// }
|
||||
/// %0 = bufferization.to_tensor %m : memref_type
|
||||
/// ```
|
||||
///
|
||||
/// A later bbArg canonicalization will further rewrite as:
|
||||
/// ```
|
||||
/// // %m is either a buffer_cast or defined above
|
||||
/// %m... : memref_type
|
||||
/// scf.for ... { // no iter_args
|
||||
/// ... // uses of %m with potential inplace updates
|
||||
/// }
|
||||
/// %0 = bufferization.to_tensor %m : memref_type
|
||||
/// ```
|
||||
struct LastTensorLoadCanonicalization : public OpRewritePattern<ForOp> {
|
||||
using OpRewritePattern<ForOp>::OpRewritePattern;
|
||||
|
||||
LogicalResult matchAndRewrite(ForOp forOp,
|
||||
PatternRewriter &rewriter) const override {
|
||||
assert(std::next(forOp.getRegion().begin()) == forOp.getRegion().end() &&
|
||||
"unexpected multiple blocks");
|
||||
|
||||
Location loc = forOp.getLoc();
|
||||
DenseMap<Value, Value> replacements;
|
||||
for (BlockArgument bbArg : forOp.getRegionIterArgs()) {
|
||||
unsigned idx = bbArg.getArgNumber() - /*numIv=*/1;
|
||||
auto yieldOp =
|
||||
cast<scf::YieldOp>(forOp.getRegion().front().getTerminator());
|
||||
Value yieldVal = yieldOp->getOperand(idx);
|
||||
auto tensorLoadOp = yieldVal.getDefiningOp<bufferization::ToTensorOp>();
|
||||
bool isTensor = llvm::isa<TensorType>(bbArg.getType());
|
||||
|
||||
bufferization::ToMemrefOp tensorToMemref;
|
||||
// Either bbArg has no use or it has a single buffer_cast use.
|
||||
if (bbArg.hasOneUse())
|
||||
tensorToMemref =
|
||||
dyn_cast<bufferization::ToMemrefOp>(*bbArg.getUsers().begin());
|
||||
if (!isTensor || !tensorLoadOp || (!bbArg.use_empty() && !tensorToMemref))
|
||||
continue;
|
||||
// If tensorToMemref is present, it must feed into the `ToTensorOp`.
|
||||
if (tensorToMemref && tensorLoadOp.getMemref() != tensorToMemref)
|
||||
continue;
|
||||
// TODO: Any aliasing write of tensorLoadOp.memref() nested under `forOp`
|
||||
// must be before `ToTensorOp` in the block so that the lastWrite
|
||||
// property is not subject to additional side-effects.
|
||||
// For now, we only support the case when ToTensorOp appears
|
||||
// immediately before the terminator.
|
||||
if (tensorLoadOp->getNextNode() != yieldOp)
|
||||
continue;
|
||||
|
||||
// Clone the optional tensorToMemref before forOp.
|
||||
if (tensorToMemref) {
|
||||
rewriter.setInsertionPoint(forOp);
|
||||
rewriter.replaceOpWithNewOp<bufferization::ToMemrefOp>(
|
||||
tensorToMemref, tensorToMemref.getMemref().getType(),
|
||||
tensorToMemref.getTensor());
|
||||
}
|
||||
|
||||
// Clone the tensorLoad after forOp.
|
||||
rewriter.setInsertionPointAfter(forOp);
|
||||
Value newTensorLoad = rewriter.create<bufferization::ToTensorOp>(
|
||||
loc, tensorLoadOp.getMemref());
|
||||
Value forOpResult = forOp.getResult(bbArg.getArgNumber() - /*iv=*/1);
|
||||
replacements.insert(std::make_pair(forOpResult, newTensorLoad));
|
||||
|
||||
// Make the terminator just yield the bbArg, the old tensorLoadOp + the
|
||||
// old bbArg (that is now directly yielded) will canonicalize away.
|
||||
rewriter.startRootUpdate(yieldOp);
|
||||
yieldOp.setOperand(idx, bbArg);
|
||||
rewriter.finalizeRootUpdate(yieldOp);
|
||||
}
|
||||
if (replacements.empty())
|
||||
return failure();
|
||||
|
||||
// We want to replace a subset of the results of `forOp`. rewriter.replaceOp
|
||||
// replaces the whole op and erase it unconditionally. This is wrong for
|
||||
// `forOp` as it generally contains ops with side effects.
|
||||
// Instead, use `rewriter.replaceOpWithIf`.
|
||||
SmallVector<Value> newResults;
|
||||
newResults.reserve(forOp.getNumResults());
|
||||
for (Value v : forOp.getResults()) {
|
||||
auto it = replacements.find(v);
|
||||
newResults.push_back((it != replacements.end()) ? it->second : v);
|
||||
}
|
||||
unsigned idx = 0;
|
||||
rewriter.replaceOpWithIf(forOp, newResults, [&](OpOperand &op) {
|
||||
return op.get() != newResults[idx++];
|
||||
});
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
void ForOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
||||
MLIRContext *context) {
|
||||
results.add<ForOpIterArgsFolder, SimplifyTrivialLoops,
|
||||
LastTensorLoadCanonicalization, ForOpTensorCastFolder>(context);
|
||||
results.add<ForOpIterArgsFolder, SimplifyTrivialLoops, ForOpTensorCastFolder>(
|
||||
context);
|
||||
}
|
||||
|
||||
std::optional<APInt> ForOp::getConstantStep() {
|
||||
|
||||
@@ -773,56 +773,6 @@ func.func @remove_empty_parallel_loop(%lb: index, %ub: index, %s: index) {
|
||||
|
||||
// -----
|
||||
|
||||
func.func private @process(%0 : memref<128x128xf32>)
|
||||
func.func private @process_tensor(%0 : tensor<128x128xf32>) -> memref<128x128xf32>
|
||||
|
||||
// CHECK-LABEL: last_value
|
||||
// CHECK-SAME: %[[T0:[0-9a-z]*]]: tensor<128x128xf32>
|
||||
// CHECK-SAME: %[[T1:[0-9a-z]*]]: tensor<128x128xf32>
|
||||
// CHECK-SAME: %[[T2:[0-9a-z]*]]: tensor<128x128xf32>
|
||||
// CHECK-SAME: %[[M0:[0-9a-z]*]]: memref<128x128xf32>
|
||||
func.func @last_value(%t0: tensor<128x128xf32>, %t1: tensor<128x128xf32>,
|
||||
%t2: tensor<128x128xf32>, %m0: memref<128x128xf32>,
|
||||
%lb : index, %ub : index, %step : index)
|
||||
-> (tensor<128x128xf32>, tensor<128x128xf32>, tensor<128x128xf32>)
|
||||
{
|
||||
// CHECK-NEXT: %[[M1:.*]] = bufferization.to_memref %[[T1]] : memref<128x128xf32>
|
||||
// CHECK-NEXT: %[[FOR_RES:.*]] = scf.for {{.*}} iter_args(%[[BBARG_T2:.*]] = %[[T2]]) -> (tensor<128x128xf32>) {
|
||||
%0:3 = scf.for %arg0 = %lb to %ub step %step iter_args(%arg1 = %t0, %arg2 = %t1, %arg3 = %t2)
|
||||
-> (tensor<128x128xf32>, tensor<128x128xf32>, tensor<128x128xf32>)
|
||||
{
|
||||
%m1 = bufferization.to_memref %arg2 : memref<128x128xf32>
|
||||
|
||||
// CHECK-NEXT: call @process(%[[M0]]) : (memref<128x128xf32>) -> ()
|
||||
func.call @process(%m0) : (memref<128x128xf32>) -> ()
|
||||
|
||||
// CHECK-NEXT: call @process(%[[M1]]) : (memref<128x128xf32>) -> ()
|
||||
func.call @process(%m1) : (memref<128x128xf32>) -> ()
|
||||
|
||||
// This does not hoist (fails the bbArg has at most a single check).
|
||||
// CHECK-NEXT: %[[T:.*]] = func.call @process_tensor(%[[BBARG_T2]]) : (tensor<128x128xf32>) -> memref<128x128xf32>
|
||||
// CHECK-NEXT: %[[YIELD_T:.*]] = bufferization.to_tensor %[[T:.*]]
|
||||
%m2 = func.call @process_tensor(%arg3): (tensor<128x128xf32>) -> memref<128x128xf32>
|
||||
%3 = bufferization.to_tensor %m2 : memref<128x128xf32>
|
||||
|
||||
// All this stuff goes away, incrementally
|
||||
%1 = bufferization.to_tensor %m0 : memref<128x128xf32>
|
||||
%2 = bufferization.to_tensor %m1 : memref<128x128xf32>
|
||||
|
||||
// CHECK-NEXT: scf.yield %[[YIELD_T]] : tensor<128x128xf32>
|
||||
scf.yield %1, %2, %3 : tensor<128x128xf32>, tensor<128x128xf32>, tensor<128x128xf32>
|
||||
|
||||
// CHECK-NEXT: }
|
||||
}
|
||||
|
||||
// CHECK-NEXT: %[[R0:.*]] = bufferization.to_tensor %[[M0]] : memref<128x128xf32>
|
||||
// CHECK-NEXT: %[[R1:.*]] = bufferization.to_tensor %[[M1]] : memref<128x128xf32>
|
||||
// CHECK-NEXT: return %[[R0]], %[[R1]], %[[FOR_RES]] : tensor<128x128xf32>, tensor<128x128xf32>, tensor<128x128xf32>
|
||||
return %0#0, %0#1, %0#2 : tensor<128x128xf32>, tensor<128x128xf32>, tensor<128x128xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: fold_away_iter_with_no_use_and_yielded_input
|
||||
// CHECK-SAME: %[[A0:[0-9a-z]*]]: i32
|
||||
func.func @fold_away_iter_with_no_use_and_yielded_input(%arg0 : i32,
|
||||
|
||||
@@ -3994,7 +3994,6 @@ cc_library(
|
||||
deps = [
|
||||
":ArithDialect",
|
||||
":ArithUtils",
|
||||
":BufferizationDialect",
|
||||
":ControlFlowDialect",
|
||||
":ControlFlowInterfaces",
|
||||
":DestinationStyleOpInterface",
|
||||
|
||||
Reference in New Issue
Block a user