[libclc] Move asin/acos/atan to the CLC library (#132788)
This commit simultaneously moves these three functions to the CLC library and optimizing them for vector types by avoiding scalarization.
This commit is contained in:
20
libclc/clc/include/clc/math/clc_acos.h
Normal file
20
libclc/clc/include/clc/math/clc_acos.h
Normal file
@@ -0,0 +1,20 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef __CLC_MATH_CLC_ACOS_H__
|
||||
#define __CLC_MATH_CLC_ACOS_H__
|
||||
|
||||
#define __CLC_BODY <clc/math/unary_decl.inc>
|
||||
#define __CLC_FUNCTION __clc_acos
|
||||
|
||||
#include <clc/math/gentype.inc>
|
||||
|
||||
#undef __CLC_BODY
|
||||
#undef __CLC_FUNCTION
|
||||
|
||||
#endif // __CLC_MATH_CLC_ACOS_H__
|
||||
20
libclc/clc/include/clc/math/clc_asin.h
Normal file
20
libclc/clc/include/clc/math/clc_asin.h
Normal file
@@ -0,0 +1,20 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef __CLC_MATH_CLC_ASIN_H__
|
||||
#define __CLC_MATH_CLC_ASIN_H__
|
||||
|
||||
#define __CLC_BODY <clc/math/unary_decl.inc>
|
||||
#define __CLC_FUNCTION __clc_asin
|
||||
|
||||
#include <clc/math/gentype.inc>
|
||||
|
||||
#undef __CLC_BODY
|
||||
#undef __CLC_FUNCTION
|
||||
|
||||
#endif // __CLC_MATH_CLC_ASIN_H__
|
||||
20
libclc/clc/include/clc/math/clc_atan.h
Normal file
20
libclc/clc/include/clc/math/clc_atan.h
Normal file
@@ -0,0 +1,20 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef __CLC_MATH_CLC_ATAN_H__
|
||||
#define __CLC_MATH_CLC_ATAN_H__
|
||||
|
||||
#define __CLC_BODY <clc/math/unary_decl.inc>
|
||||
#define __CLC_FUNCTION __clc_atan
|
||||
|
||||
#include <clc/math/gentype.inc>
|
||||
|
||||
#undef __CLC_BODY
|
||||
#undef __CLC_FUNCTION
|
||||
|
||||
#endif // __CLC_MATH_CLC_ATAN_H__
|
||||
@@ -17,6 +17,9 @@ integer/clc_rhadd.cl
|
||||
integer/clc_rotate.cl
|
||||
integer/clc_sub_sat.cl
|
||||
integer/clc_upsample.cl
|
||||
math/clc_acos.cl
|
||||
math/clc_asin.cl
|
||||
math/clc_atan.cl
|
||||
math/clc_ceil.cl
|
||||
math/clc_copysign.cl
|
||||
math/clc_fabs.cl
|
||||
|
||||
20
libclc/clc/lib/generic/math/clc_acos.cl
Normal file
20
libclc/clc/lib/generic/math/clc_acos.cl
Normal file
@@ -0,0 +1,20 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include <clc/clc_convert.h>
|
||||
#include <clc/float/definitions.h>
|
||||
#include <clc/internal/clc.h>
|
||||
#include <clc/math/clc_fabs.h>
|
||||
#include <clc/math/clc_fma.h>
|
||||
#include <clc/math/clc_mad.h>
|
||||
#include <clc/math/clc_sqrt.h>
|
||||
#include <clc/math/math.h>
|
||||
#include <clc/relational/clc_isnan.h>
|
||||
|
||||
#define __CLC_BODY <clc_acos.inc>
|
||||
#include <clc/math/gentype.inc>
|
||||
158
libclc/clc/lib/generic/math/clc_acos.inc
Normal file
158
libclc/clc/lib/generic/math/clc_acos.inc
Normal file
@@ -0,0 +1,158 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Computes arccos(x).
|
||||
//
|
||||
// The incoming argument is first reduced by noting that arccos(x) is invalid
|
||||
// for abs(x) > 1.
|
||||
//
|
||||
// For denormal and small arguments arccos(x) = pi/2 to machine accuracy.
|
||||
//
|
||||
// Remaining argument ranges are handled as follows:
|
||||
// * For abs(x) <= 0.5 use:
|
||||
// arccos(x) = pi/2 - arcsin(x) = pi/2 - (x + x^3 * R(x^2))
|
||||
// where R(x^2) is a rational minimax approximation to (arcsin(x) - x)/x^3.
|
||||
// * For abs(x) > 0.5 exploit the identity:
|
||||
// arccos(x) = pi - 2 * arcsin(sqrt(1 - x)/2)
|
||||
// together with the above rational approximation, and reconstruct the terms
|
||||
// carefully.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#if __CLC_FPSIZE == 32
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_acos(__CLC_GENTYPE x) {
|
||||
// Some constants and split constants.
|
||||
const __CLC_GENTYPE piby2 = __CLC_FP_LIT(1.5707963705e+00);
|
||||
const __CLC_GENTYPE pi = __CLC_FP_LIT(3.1415926535897933e+00);
|
||||
const __CLC_GENTYPE piby2_head = __CLC_FP_LIT(1.5707963267948965580e+00);
|
||||
const __CLC_GENTYPE piby2_tail = __CLC_FP_LIT(6.12323399573676603587e-17);
|
||||
|
||||
__CLC_UINTN ux = __CLC_AS_UINTN(x);
|
||||
__CLC_UINTN aux = ux & ~SIGNBIT_SP32;
|
||||
__CLC_INTN xneg = ux != aux;
|
||||
__CLC_INTN xexp = __CLC_AS_INTN(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
|
||||
__CLC_GENTYPE y = __CLC_AS_GENTYPE(aux);
|
||||
|
||||
// transform if |x| >= 0.5
|
||||
__CLC_INTN transform = xexp >= -1;
|
||||
|
||||
__CLC_GENTYPE y2 = y * y;
|
||||
__CLC_GENTYPE yt = 0.5f * (1.0f - y);
|
||||
__CLC_GENTYPE r = transform ? yt : y2;
|
||||
|
||||
// Use a rational approximation for [0.0, 0.5]
|
||||
__CLC_GENTYPE a =
|
||||
__clc_mad(r,
|
||||
__clc_mad(r,
|
||||
__clc_mad(r, -0.00396137437848476485201154797087F,
|
||||
-0.0133819288943925804214011424456F),
|
||||
-0.0565298683201845211985026327361F),
|
||||
0.184161606965100694821398249421F);
|
||||
|
||||
__CLC_GENTYPE b = __clc_mad(r, -0.836411276854206731913362287293F,
|
||||
1.10496961524520294485512696706F);
|
||||
__CLC_GENTYPE u = r * MATH_DIVIDE(a, b);
|
||||
|
||||
__CLC_GENTYPE s = __clc_sqrt(r);
|
||||
y = s;
|
||||
__CLC_GENTYPE s1 = __CLC_AS_GENTYPE(__CLC_AS_UINTN(s) & 0xffff0000);
|
||||
__CLC_GENTYPE c = MATH_DIVIDE(__clc_mad(s1, -s1, r), s + s1);
|
||||
__CLC_GENTYPE rettn = __clc_mad(s + __clc_mad(y, u, -piby2_tail), -2.0f, pi);
|
||||
__CLC_GENTYPE rettp = 2.0F * (s1 + __clc_mad(y, u, c));
|
||||
__CLC_GENTYPE rett = xneg ? rettn : rettp;
|
||||
__CLC_GENTYPE ret = piby2_head - (x - __clc_mad(x, -u, piby2_tail));
|
||||
|
||||
ret = transform ? rett : ret;
|
||||
ret = aux > 0x3f800000U ? __CLC_GENTYPE_NAN : ret;
|
||||
ret = ux == 0x3f800000U ? 0.0f : ret;
|
||||
ret = ux == 0xbf800000U ? pi : ret;
|
||||
ret = xexp < -26 ? piby2 : ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
#elif __CLC_FPSIZE == 64
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_acos(__CLC_GENTYPE x) {
|
||||
// 0x400921fb54442d18
|
||||
const __CLC_GENTYPE pi = __CLC_FP_LIT(3.1415926535897933e+00);
|
||||
// 0x3ff921fb54442d18
|
||||
const __CLC_GENTYPE piby2 = __CLC_FP_LIT(1.5707963267948965580e+00);
|
||||
// 0x3ff921fb54442d18
|
||||
const __CLC_GENTYPE piby2_head = __CLC_FP_LIT(1.5707963267948965580e+00);
|
||||
// 0x3c91a62633145c07
|
||||
const __CLC_GENTYPE piby2_tail = __CLC_FP_LIT(6.12323399573676603587e-17);
|
||||
|
||||
__CLC_GENTYPE y = __clc_fabs(x);
|
||||
__CLC_LONGN xneg = x < __CLC_FP_LIT(0.0);
|
||||
__CLC_INTN xexp = __CLC_CONVERT_INTN(
|
||||
(__CLC_AS_ULONGN(y) >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64);
|
||||
|
||||
// abs(x) >= 0.5
|
||||
__CLC_LONGN transform = __CLC_CONVERT_LONGN(xexp >= -1);
|
||||
|
||||
__CLC_GENTYPE rt = __CLC_FP_LIT(0.5) * (__CLC_FP_LIT(1.0) - y);
|
||||
__CLC_GENTYPE y2 = y * y;
|
||||
__CLC_GENTYPE r = transform ? rt : y2;
|
||||
|
||||
// Use a rational approximation for [0.0, 0.5]
|
||||
__CLC_GENTYPE un = __clc_fma(
|
||||
r,
|
||||
__clc_fma(
|
||||
r,
|
||||
__clc_fma(r,
|
||||
__clc_fma(r,
|
||||
__clc_fma(r, 0.0000482901920344786991880522822991,
|
||||
0.00109242697235074662306043804220),
|
||||
-0.0549989809235685841612020091328),
|
||||
0.275558175256937652532686256258),
|
||||
-0.445017216867635649900123110649),
|
||||
0.227485835556935010735943483075);
|
||||
|
||||
__CLC_GENTYPE ud = __clc_fma(
|
||||
r,
|
||||
__clc_fma(r,
|
||||
__clc_fma(r,
|
||||
__clc_fma(r, 0.105869422087204370341222318533,
|
||||
-0.943639137032492685763471240072),
|
||||
2.76568859157270989520376345954),
|
||||
-3.28431505720958658909889444194),
|
||||
1.36491501334161032038194214209);
|
||||
|
||||
__CLC_GENTYPE u = r * MATH_DIVIDE(un, ud);
|
||||
|
||||
// Reconstruct acos carefully in transformed region
|
||||
__CLC_GENTYPE s = __clc_sqrt(r);
|
||||
__CLC_GENTYPE ztn = __clc_fma(-2.0, (s + __clc_fma(s, u, -piby2_tail)), pi);
|
||||
|
||||
__CLC_GENTYPE s1 =
|
||||
__CLC_AS_GENTYPE(__CLC_AS_ULONGN(s) & 0xffffffff00000000UL);
|
||||
__CLC_GENTYPE c = MATH_DIVIDE(__clc_fma(-s1, s1, r), s + s1);
|
||||
__CLC_GENTYPE ztp = 2.0 * (s1 + __clc_fma(s, u, c));
|
||||
__CLC_GENTYPE zt = xneg ? ztn : ztp;
|
||||
__CLC_GENTYPE z = piby2_head - (x - __clc_fma(-x, u, piby2_tail));
|
||||
|
||||
z = transform ? zt : z;
|
||||
|
||||
z = __CLC_CONVERT_LONGN(xexp < -56) ? piby2 : z;
|
||||
z = __clc_isnan(x) ? __CLC_AS_GENTYPE((__CLC_AS_ULONGN(x) |
|
||||
(__CLC_ULONGN)QNANBITPATT_DP64))
|
||||
: z;
|
||||
z = x == 1.0 ? 0.0 : z;
|
||||
z = x == -1.0 ? pi : z;
|
||||
|
||||
return z;
|
||||
}
|
||||
|
||||
#elif __CLC_FPSIZE == 16
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_acos(__CLC_GENTYPE x) {
|
||||
return __CLC_CONVERT_GENTYPE(__clc_acos(__CLC_CONVERT_FLOATN(x)));
|
||||
}
|
||||
|
||||
#endif
|
||||
19
libclc/clc/lib/generic/math/clc_asin.cl
Normal file
19
libclc/clc/lib/generic/math/clc_asin.cl
Normal file
@@ -0,0 +1,19 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include <clc/clc_convert.h>
|
||||
#include <clc/float/definitions.h>
|
||||
#include <clc/internal/clc.h>
|
||||
#include <clc/math/clc_fabs.h>
|
||||
#include <clc/math/clc_fma.h>
|
||||
#include <clc/math/clc_mad.h>
|
||||
#include <clc/math/clc_sqrt.h>
|
||||
#include <clc/math/math.h>
|
||||
|
||||
#define __CLC_BODY <clc_asin.inc>
|
||||
#include <clc/math/gentype.inc>
|
||||
154
libclc/clc/lib/generic/math/clc_asin.inc
Normal file
154
libclc/clc/lib/generic/math/clc_asin.inc
Normal file
@@ -0,0 +1,154 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Computes arcsin(x).
|
||||
//
|
||||
// The incoming argument is first reduced by noting that arcsin(x) is invalid
|
||||
// for abs(x) > 1 and arcsin(-x) = -arcsin(x).
|
||||
//
|
||||
// For denormal and small arguments, arcsin(x) = x to machine accuracy.
|
||||
//
|
||||
// Remaining argument ranges are handled as follows:
|
||||
// * For abs(x) <= 0.5 use:
|
||||
// arcsin(x) = x + x^3 * R(x^2)
|
||||
// where R(x^2) is a rational minimax approximation to (arcsin(x) - x)/x^3.
|
||||
// * For abs(x) > 0.5 exploit the identity:
|
||||
// arcsin(x) = pi/2 - 2 * arcsin(sqrt(1 - x)/2)
|
||||
// together with the above rational approximation, and reconstruct the terms
|
||||
// carefully.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#if __CLC_FPSIZE == 32
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_asin(__CLC_GENTYPE x) {
|
||||
// 0x33a22168
|
||||
const __CLC_GENTYPE piby2_tail = __CLC_FP_LIT(7.5497894159e-08);
|
||||
// 0x3f490fda
|
||||
const __CLC_GENTYPE hpiby2_head = __CLC_FP_LIT(7.8539812565e-01);
|
||||
// 0x3fc90fdb
|
||||
const __CLC_GENTYPE piby2 = __CLC_FP_LIT(1.5707963705e+00);
|
||||
|
||||
__CLC_UINTN ux = __CLC_AS_UINTN(x);
|
||||
__CLC_UINTN aux = ux & EXSIGNBIT_SP32;
|
||||
__CLC_UINTN xs = ux ^ aux;
|
||||
__CLC_GENTYPE spiby2 = __CLC_AS_GENTYPE(xs | __CLC_AS_UINTN(piby2));
|
||||
__CLC_INTN xexp = __CLC_AS_INTN(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
|
||||
__CLC_GENTYPE y = __CLC_AS_GENTYPE(aux);
|
||||
|
||||
// abs(x) >= 0.5
|
||||
__CLC_INTN transform = xexp >= -1;
|
||||
|
||||
__CLC_GENTYPE y2 = y * y;
|
||||
__CLC_GENTYPE rt = __CLC_FP_LIT(0.5) * (__CLC_FP_LIT(1.0) - y);
|
||||
__CLC_GENTYPE r = transform ? rt : y2;
|
||||
|
||||
// Use a rational approximation for [0.0, 0.5]
|
||||
__CLC_GENTYPE a =
|
||||
__clc_mad(r,
|
||||
__clc_mad(r,
|
||||
__clc_mad(r, -0.00396137437848476485201154797087F,
|
||||
-0.0133819288943925804214011424456F),
|
||||
-0.0565298683201845211985026327361F),
|
||||
0.184161606965100694821398249421F);
|
||||
|
||||
__CLC_GENTYPE b = __clc_mad(r, -0.836411276854206731913362287293F,
|
||||
1.10496961524520294485512696706F);
|
||||
__CLC_GENTYPE u = r * MATH_DIVIDE(a, b);
|
||||
|
||||
__CLC_GENTYPE s = __clc_sqrt(r);
|
||||
__CLC_GENTYPE s1 = __CLC_AS_GENTYPE(__CLC_AS_UINTN(s) & 0xffff0000);
|
||||
__CLC_GENTYPE c = MATH_DIVIDE(__clc_mad(-s1, s1, r), s + s1);
|
||||
__CLC_GENTYPE p = __clc_mad(2.0f * s, u, -__clc_mad(c, -2.0f, piby2_tail));
|
||||
__CLC_GENTYPE q = __clc_mad(s1, -2.0f, hpiby2_head);
|
||||
__CLC_GENTYPE vt = hpiby2_head - (p - q);
|
||||
__CLC_GENTYPE v = __clc_mad(y, u, y);
|
||||
v = transform ? vt : v;
|
||||
|
||||
__CLC_GENTYPE ret = __CLC_AS_GENTYPE(xs | __CLC_AS_UINTN(v));
|
||||
ret = aux > 0x3f800000U ? __CLC_GENTYPE_NAN : ret;
|
||||
ret = aux == 0x3f800000U ? spiby2 : ret;
|
||||
ret = xexp < -14 ? x : ret;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
#elif __CLC_FPSIZE == 64
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_asin(__CLC_GENTYPE x) {
|
||||
// 0x3c91a62633145c07
|
||||
const __CLC_GENTYPE piby2_tail = __CLC_FP_LIT(6.1232339957367660e-17);
|
||||
// 0x3fe921fb54442d18
|
||||
const __CLC_GENTYPE hpiby2_head = 7.8539816339744831e-01;
|
||||
// 0x3ff921fb54442d18
|
||||
const __CLC_GENTYPE piby2 = 1.5707963267948965e+00;
|
||||
|
||||
__CLC_GENTYPE y = __clc_fabs(x);
|
||||
__CLC_LONGN xneg = x < __CLC_FP_LIT(0.0);
|
||||
__CLC_INTN xexp = __CLC_CONVERT_INTN(
|
||||
(__CLC_AS_ULONGN(y) >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64);
|
||||
|
||||
// abs(x) >= 0.5
|
||||
__CLC_LONGN transform = __CLC_CONVERT_LONGN(xexp >= -1);
|
||||
|
||||
__CLC_GENTYPE rt = __CLC_FP_LIT(0.5) * (__CLC_FP_LIT(1.0) - y);
|
||||
__CLC_GENTYPE y2 = y * y;
|
||||
__CLC_GENTYPE r = transform ? rt : y2;
|
||||
|
||||
// Use a rational approximation for [0.0, 0.5]
|
||||
|
||||
__CLC_GENTYPE un = __clc_fma(
|
||||
r,
|
||||
__clc_fma(
|
||||
r,
|
||||
__clc_fma(r,
|
||||
__clc_fma(r,
|
||||
__clc_fma(r, 0.0000482901920344786991880522822991,
|
||||
0.00109242697235074662306043804220),
|
||||
-0.0549989809235685841612020091328),
|
||||
0.275558175256937652532686256258),
|
||||
-0.445017216867635649900123110649),
|
||||
0.227485835556935010735943483075);
|
||||
|
||||
__CLC_GENTYPE ud = __clc_fma(
|
||||
r,
|
||||
__clc_fma(r,
|
||||
__clc_fma(r,
|
||||
__clc_fma(r, 0.105869422087204370341222318533,
|
||||
-0.943639137032492685763471240072),
|
||||
2.76568859157270989520376345954),
|
||||
-3.28431505720958658909889444194),
|
||||
1.36491501334161032038194214209);
|
||||
|
||||
__CLC_GENTYPE u = r * MATH_DIVIDE(un, ud);
|
||||
|
||||
// Reconstruct asin carefully in transformed region
|
||||
__CLC_GENTYPE s = __clc_sqrt(r);
|
||||
__CLC_GENTYPE sh =
|
||||
__CLC_AS_GENTYPE(__CLC_AS_ULONGN(s) & 0xffffffff00000000UL);
|
||||
__CLC_GENTYPE c = MATH_DIVIDE(__clc_fma(-sh, sh, r), s + sh);
|
||||
__CLC_GENTYPE p = __clc_fma(2.0 * s, u, -__clc_fma(-2.0, c, piby2_tail));
|
||||
__CLC_GENTYPE q = __clc_fma(-2.0, sh, hpiby2_head);
|
||||
__CLC_GENTYPE vt = hpiby2_head - (p - q);
|
||||
__CLC_GENTYPE v = __clc_fma(y, u, y);
|
||||
v = transform ? vt : v;
|
||||
|
||||
v = __CLC_CONVERT_LONGN(xexp < -28) ? y : v;
|
||||
v = __CLC_CONVERT_LONGN(xexp >= 0) ? __CLC_GENTYPE_NAN : v;
|
||||
v = y == 1.0 ? piby2 : v;
|
||||
|
||||
return xneg ? -v : v;
|
||||
}
|
||||
|
||||
#elif __CLC_FPSIZE == 16
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_asin(__CLC_GENTYPE x) {
|
||||
return __CLC_CONVERT_GENTYPE(__clc_asin(__CLC_CONVERT_FLOATN(x)));
|
||||
}
|
||||
|
||||
#endif
|
||||
19
libclc/clc/lib/generic/math/clc_atan.cl
Normal file
19
libclc/clc/lib/generic/math/clc_atan.cl
Normal file
@@ -0,0 +1,19 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include <clc/clc_convert.h>
|
||||
#include <clc/float/definitions.h>
|
||||
#include <clc/internal/clc.h>
|
||||
#include <clc/math/clc_fabs.h>
|
||||
#include <clc/math/clc_fma.h>
|
||||
#include <clc/math/clc_mad.h>
|
||||
#include <clc/math/math.h>
|
||||
#include <clc/relational/clc_isnan.h>
|
||||
|
||||
#define __CLC_BODY <clc_atan.inc>
|
||||
#include <clc/math/gentype.inc>
|
||||
168
libclc/clc/lib/generic/math/clc_atan.inc
Normal file
168
libclc/clc/lib/generic/math/clc_atan.inc
Normal file
@@ -0,0 +1,168 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#if __CLC_FPSIZE == 32
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_atan(__CLC_GENTYPE x) {
|
||||
const __CLC_GENTYPE piby2 = 1.5707963267948966f; // 0x3ff921fb54442d18
|
||||
|
||||
__CLC_UINTN ux = __CLC_AS_UINTN(x);
|
||||
__CLC_UINTN aux = ux & EXSIGNBIT_SP32;
|
||||
__CLC_UINTN sx = ux ^ aux;
|
||||
|
||||
__CLC_GENTYPE spiby2 = __CLC_AS_GENTYPE(sx | __CLC_AS_UINTN(piby2));
|
||||
|
||||
__CLC_GENTYPE v = __CLC_AS_GENTYPE(aux);
|
||||
|
||||
// Return for NaN
|
||||
__CLC_GENTYPE ret = x;
|
||||
|
||||
// 2^26 <= |x| <= Inf => atan(x) is close to piby2
|
||||
ret = aux <= PINFBITPATT_SP32 ? spiby2 : ret;
|
||||
|
||||
// Reduce arguments 2^-19 <= |x| < 2^26
|
||||
|
||||
// 39/16 <= x < 2^26
|
||||
x = -MATH_RECIP(v);
|
||||
__CLC_GENTYPE c = 1.57079632679489655800f; // atan(infinity)
|
||||
|
||||
// 19/16 <= x < 39/16
|
||||
__CLC_INTN l = aux < 0x401c0000;
|
||||
__CLC_GENTYPE xx = MATH_DIVIDE(v - 1.5f, __clc_mad(v, 1.5f, 1.0f));
|
||||
x = l ? xx : x;
|
||||
c = l ? 9.82793723247329054082e-01f : c; // atan(1.5)
|
||||
|
||||
// 11/16 <= x < 19/16
|
||||
l = aux < 0x3f980000U;
|
||||
xx = MATH_DIVIDE(v - 1.0f, 1.0f + v);
|
||||
x = l ? xx : x;
|
||||
c = l ? 7.85398163397448278999e-01f : c; // atan(1)
|
||||
|
||||
// 7/16 <= x < 11/16
|
||||
l = aux < 0x3f300000;
|
||||
xx = MATH_DIVIDE(__clc_mad(v, 2.0f, -1.0f), 2.0f + v);
|
||||
x = l ? xx : x;
|
||||
c = l ? 4.63647609000806093515e-01f : c; // atan(0.5)
|
||||
|
||||
// 2^-19 <= x < 7/16
|
||||
l = aux < 0x3ee00000;
|
||||
x = l ? v : x;
|
||||
c = l ? 0.0f : c;
|
||||
|
||||
// Core approximation: Remez(2,2) on [-7/16,7/16]
|
||||
|
||||
__CLC_GENTYPE s = x * x;
|
||||
__CLC_GENTYPE a = __clc_mad(s,
|
||||
__clc_mad(s, 0.470677934286149214138357545549e-2f,
|
||||
0.192324546402108583211697690500f),
|
||||
0.296528598819239217902158651186f);
|
||||
|
||||
__CLC_GENTYPE b = __clc_mad(s,
|
||||
__clc_mad(s, 0.299309699959659728404442796915f,
|
||||
0.111072499995399550138837673349e1f),
|
||||
0.889585796862432286486651434570f);
|
||||
|
||||
__CLC_GENTYPE q = x * s * MATH_DIVIDE(a, b);
|
||||
|
||||
__CLC_GENTYPE z = c - (q - x);
|
||||
__CLC_GENTYPE zs = __CLC_AS_GENTYPE(sx | __CLC_AS_UINTN(z));
|
||||
|
||||
ret = aux < 0x4c800000 ? zs : ret;
|
||||
|
||||
// |x| < 2^-19
|
||||
ret = aux < 0x36000000 ? __CLC_AS_GENTYPE(ux) : ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
#elif __CLC_FPSIZE == 64
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_atan(__CLC_GENTYPE x) {
|
||||
const __CLC_GENTYPE piby2 = 1.5707963267948966e+00; // 0x3ff921fb54442d18
|
||||
|
||||
__CLC_GENTYPE v = __clc_fabs(x);
|
||||
|
||||
// 2^56 > v > 39/16
|
||||
__CLC_GENTYPE a = -1.0;
|
||||
__CLC_GENTYPE b = v;
|
||||
// (chi + clo) = arctan(infinity)
|
||||
__CLC_GENTYPE chi = 1.57079632679489655800e+00;
|
||||
__CLC_GENTYPE clo = 6.12323399573676480327e-17;
|
||||
|
||||
__CLC_GENTYPE ta = v - 1.5;
|
||||
__CLC_GENTYPE tb = 1.0 + 1.5 * v;
|
||||
__CLC_LONGN l = v <= 0x1.38p+1; // 39/16 > v > 19/16
|
||||
a = l ? ta : a;
|
||||
b = l ? tb : b;
|
||||
// (chi + clo) = arctan(1.5)
|
||||
chi = l ? 9.82793723247329054082e-01 : chi;
|
||||
clo = l ? 1.39033110312309953701e-17 : clo;
|
||||
|
||||
ta = v - 1.0;
|
||||
tb = 1.0 + v;
|
||||
l = v <= 0x1.3p+0; // 19/16 > v > 11/16
|
||||
a = l ? ta : a;
|
||||
b = l ? tb : b;
|
||||
// (chi + clo) = arctan(1.)
|
||||
chi = l ? 7.85398163397448278999e-01 : chi;
|
||||
clo = l ? 3.06161699786838240164e-17 : clo;
|
||||
|
||||
ta = 2.0 * v - 1.0;
|
||||
tb = 2.0 + v;
|
||||
l = v <= 0x1.6p-1; // 11/16 > v > 7/16
|
||||
a = l ? ta : a;
|
||||
b = l ? tb : b;
|
||||
// (chi + clo) = arctan(0.5)
|
||||
chi = l ? 4.63647609000806093515e-01 : chi;
|
||||
clo = l ? 2.26987774529616809294e-17 : clo;
|
||||
|
||||
l = v <= 0x1.cp-2; // v < 7/16
|
||||
a = l ? v : a;
|
||||
b = l ? 1.0 : b;
|
||||
;
|
||||
chi = l ? 0.0 : chi;
|
||||
clo = l ? 0.0 : clo;
|
||||
|
||||
// Core approximation: Remez(4,4) on [-7/16,7/16]
|
||||
__CLC_GENTYPE r = a / b;
|
||||
__CLC_GENTYPE s = r * r;
|
||||
__CLC_GENTYPE qn =
|
||||
__clc_fma(s,
|
||||
__clc_fma(s,
|
||||
__clc_fma(s,
|
||||
__clc_fma(s, 0.142316903342317766e-3,
|
||||
0.304455919504853031e-1),
|
||||
0.220638780716667420e0),
|
||||
0.447677206805497472e0),
|
||||
0.268297920532545909e0);
|
||||
|
||||
__CLC_GENTYPE qd =
|
||||
__clc_fma(s,
|
||||
__clc_fma(s,
|
||||
__clc_fma(s,
|
||||
__clc_fma(s, 0.389525873944742195e-1,
|
||||
0.424602594203847109e0),
|
||||
0.141254259931958921e1),
|
||||
0.182596787737507063e1),
|
||||
0.804893761597637733e0);
|
||||
|
||||
__CLC_GENTYPE q = r * s * qn / qd;
|
||||
r = chi - ((q - clo) - r);
|
||||
|
||||
__CLC_GENTYPE z = __clc_isnan(x) ? x : piby2;
|
||||
z = v <= 0x1.0p+56 ? r : z;
|
||||
z = v < 0x1.0p-26 ? v : z;
|
||||
return x == v ? z : -z;
|
||||
}
|
||||
|
||||
#elif __CLC_FPSIZE == 16
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_atan(__CLC_GENTYPE x) {
|
||||
return __CLC_CONVERT_GENTYPE(__clc_atan(__CLC_CONVERT_FLOATN(x)));
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -8,160 +8,8 @@
|
||||
|
||||
#include <clc/clc.h>
|
||||
#include <clc/clcmacro.h>
|
||||
#include <clc/math/math.h>
|
||||
#include <clc/math/clc_acos.h>
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF float acos(float x) {
|
||||
// Computes arccos(x).
|
||||
// The argument is first reduced by noting that arccos(x)
|
||||
// is invalid for abs(x) > 1. For denormal and small
|
||||
// arguments arccos(x) = pi/2 to machine accuracy.
|
||||
// Remaining argument ranges are handled as follows.
|
||||
// For abs(x) <= 0.5 use
|
||||
// arccos(x) = pi/2 - arcsin(x)
|
||||
// = pi/2 - (x + x^3*R(x^2))
|
||||
// where R(x^2) is a rational minimax approximation to
|
||||
// (arcsin(x) - x)/x^3.
|
||||
// For abs(x) > 0.5 exploit the identity:
|
||||
// arccos(x) = pi - 2*arcsin(sqrt(1-x)/2)
|
||||
// together with the above rational approximation, and
|
||||
// reconstruct the terms carefully.
|
||||
|
||||
|
||||
// Some constants and split constants.
|
||||
const float piby2 = 1.5707963705e+00F;
|
||||
const float pi = 3.1415926535897933e+00F;
|
||||
const float piby2_head = 1.5707963267948965580e+00F;
|
||||
const float piby2_tail = 6.12323399573676603587e-17F;
|
||||
|
||||
uint ux = as_uint(x);
|
||||
uint aux = ux & ~SIGNBIT_SP32;
|
||||
int xneg = ux != aux;
|
||||
int xexp = (int)(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
|
||||
float y = as_float(aux);
|
||||
|
||||
// transform if |x| >= 0.5
|
||||
int transform = xexp >= -1;
|
||||
|
||||
float y2 = y * y;
|
||||
float yt = 0.5f * (1.0f - y);
|
||||
float r = transform ? yt : y2;
|
||||
|
||||
// Use a rational approximation for [0.0, 0.5]
|
||||
float a = mad(r,
|
||||
mad(r,
|
||||
mad(r, -0.00396137437848476485201154797087F, -0.0133819288943925804214011424456F),
|
||||
-0.0565298683201845211985026327361F),
|
||||
0.184161606965100694821398249421F);
|
||||
|
||||
float b = mad(r, -0.836411276854206731913362287293F, 1.10496961524520294485512696706F);
|
||||
float u = r * MATH_DIVIDE(a, b);
|
||||
|
||||
float s = MATH_SQRT(r);
|
||||
y = s;
|
||||
float s1 = as_float(as_uint(s) & 0xffff0000);
|
||||
float c = MATH_DIVIDE(mad(s1, -s1, r), s + s1);
|
||||
float rettn = mad(s + mad(y, u, -piby2_tail), -2.0f, pi);
|
||||
float rettp = 2.0F * (s1 + mad(y, u, c));
|
||||
float rett = xneg ? rettn : rettp;
|
||||
float ret = piby2_head - (x - mad(x, -u, piby2_tail));
|
||||
|
||||
ret = transform ? rett : ret;
|
||||
ret = aux > 0x3f800000U ? as_float(QNANBITPATT_SP32) : ret;
|
||||
ret = ux == 0x3f800000U ? 0.0f : ret;
|
||||
ret = ux == 0xbf800000U ? pi : ret;
|
||||
ret = xexp < -26 ? piby2 : ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, acos, float);
|
||||
|
||||
#ifdef cl_khr_fp64
|
||||
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF double acos(double x) {
|
||||
// Computes arccos(x).
|
||||
// The argument is first reduced by noting that arccos(x)
|
||||
// is invalid for abs(x) > 1. For denormal and small
|
||||
// arguments arccos(x) = pi/2 to machine accuracy.
|
||||
// Remaining argument ranges are handled as follows.
|
||||
// For abs(x) <= 0.5 use
|
||||
// arccos(x) = pi/2 - arcsin(x)
|
||||
// = pi/2 - (x + x^3*R(x^2))
|
||||
// where R(x^2) is a rational minimax approximation to
|
||||
// (arcsin(x) - x)/x^3.
|
||||
// For abs(x) > 0.5 exploit the identity:
|
||||
// arccos(x) = pi - 2*arcsin(sqrt(1-x)/2)
|
||||
// together with the above rational approximation, and
|
||||
// reconstruct the terms carefully.
|
||||
|
||||
const double pi = 3.1415926535897933e+00; /* 0x400921fb54442d18 */
|
||||
const double piby2 = 1.5707963267948965580e+00; /* 0x3ff921fb54442d18 */
|
||||
const double piby2_head = 1.5707963267948965580e+00; /* 0x3ff921fb54442d18 */
|
||||
const double piby2_tail = 6.12323399573676603587e-17; /* 0x3c91a62633145c07 */
|
||||
|
||||
double y = fabs(x);
|
||||
int xneg = as_int2(x).hi < 0;
|
||||
int xexp = (as_int2(y).hi >> 20) - EXPBIAS_DP64;
|
||||
|
||||
// abs(x) >= 0.5
|
||||
int transform = xexp >= -1;
|
||||
|
||||
double rt = 0.5 * (1.0 - y);
|
||||
double y2 = y * y;
|
||||
double r = transform ? rt : y2;
|
||||
|
||||
// Use a rational approximation for [0.0, 0.5]
|
||||
double un = fma(r,
|
||||
fma(r,
|
||||
fma(r,
|
||||
fma(r,
|
||||
fma(r, 0.0000482901920344786991880522822991,
|
||||
0.00109242697235074662306043804220),
|
||||
-0.0549989809235685841612020091328),
|
||||
0.275558175256937652532686256258),
|
||||
-0.445017216867635649900123110649),
|
||||
0.227485835556935010735943483075);
|
||||
|
||||
double ud = fma(r,
|
||||
fma(r,
|
||||
fma(r,
|
||||
fma(r, 0.105869422087204370341222318533,
|
||||
-0.943639137032492685763471240072),
|
||||
2.76568859157270989520376345954),
|
||||
-3.28431505720958658909889444194),
|
||||
1.36491501334161032038194214209);
|
||||
|
||||
double u = r * MATH_DIVIDE(un, ud);
|
||||
|
||||
// Reconstruct acos carefully in transformed region
|
||||
double s = sqrt(r);
|
||||
double ztn = fma(-2.0, (s + fma(s, u, -piby2_tail)), pi);
|
||||
|
||||
double s1 = as_double(as_ulong(s) & 0xffffffff00000000UL);
|
||||
double c = MATH_DIVIDE(fma(-s1, s1, r), s + s1);
|
||||
double ztp = 2.0 * (s1 + fma(s, u, c));
|
||||
double zt = xneg ? ztn : ztp;
|
||||
double z = piby2_head - (x - fma(-x, u, piby2_tail));
|
||||
|
||||
z = transform ? zt : z;
|
||||
|
||||
z = xexp < -56 ? piby2 : z;
|
||||
z = isnan(x) ? as_double((as_ulong(x) | QNANBITPATT_DP64)) : z;
|
||||
z = x == 1.0 ? 0.0 : z;
|
||||
z = x == -1.0 ? pi : z;
|
||||
|
||||
return z;
|
||||
}
|
||||
|
||||
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, acos, double);
|
||||
|
||||
#endif // cl_khr_fp64
|
||||
|
||||
#ifdef cl_khr_fp16
|
||||
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
_CLC_DEFINE_UNARY_BUILTIN_FP16(acos)
|
||||
|
||||
#endif
|
||||
#undef __CLC_FUNCTION
|
||||
#define __CLC_FUNCTION acos
|
||||
#include <clc/math/unary_builtin.inc>
|
||||
|
||||
@@ -8,145 +8,8 @@
|
||||
|
||||
#include <clc/clc.h>
|
||||
#include <clc/clcmacro.h>
|
||||
#include <clc/math/math.h>
|
||||
#include <clc/math/clc_asin.h>
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF float asin(float x) {
|
||||
// Computes arcsin(x).
|
||||
// The argument is first reduced by noting that arcsin(x)
|
||||
// is invalid for abs(x) > 1 and arcsin(-x) = -arcsin(x).
|
||||
// For denormal and small arguments arcsin(x) = x to machine
|
||||
// accuracy. Remaining argument ranges are handled as follows.
|
||||
// For abs(x) <= 0.5 use
|
||||
// arcsin(x) = x + x^3*R(x^2)
|
||||
// where R(x^2) is a rational minimax approximation to
|
||||
// (arcsin(x) - x)/x^3.
|
||||
// For abs(x) > 0.5 exploit the identity:
|
||||
// arcsin(x) = pi/2 - 2*arcsin(sqrt(1-x)/2)
|
||||
// together with the above rational approximation, and
|
||||
// reconstruct the terms carefully.
|
||||
|
||||
const float piby2_tail = 7.5497894159e-08F; /* 0x33a22168 */
|
||||
const float hpiby2_head = 7.8539812565e-01F; /* 0x3f490fda */
|
||||
const float piby2 = 1.5707963705e+00F; /* 0x3fc90fdb */
|
||||
|
||||
uint ux = as_uint(x);
|
||||
uint aux = ux & EXSIGNBIT_SP32;
|
||||
uint xs = ux ^ aux;
|
||||
float spiby2 = as_float(xs | as_uint(piby2));
|
||||
int xexp = (int)(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
|
||||
float y = as_float(aux);
|
||||
|
||||
// abs(x) >= 0.5
|
||||
int transform = xexp >= -1;
|
||||
|
||||
float y2 = y * y;
|
||||
float rt = 0.5f * (1.0f - y);
|
||||
float r = transform ? rt : y2;
|
||||
|
||||
// Use a rational approximation for [0.0, 0.5]
|
||||
float a = mad(r,
|
||||
mad(r,
|
||||
mad(r, -0.00396137437848476485201154797087F, -0.0133819288943925804214011424456F),
|
||||
-0.0565298683201845211985026327361F),
|
||||
0.184161606965100694821398249421F);
|
||||
|
||||
float b = mad(r, -0.836411276854206731913362287293F, 1.10496961524520294485512696706F);
|
||||
float u = r * MATH_DIVIDE(a, b);
|
||||
|
||||
float s = MATH_SQRT(r);
|
||||
float s1 = as_float(as_uint(s) & 0xffff0000);
|
||||
float c = MATH_DIVIDE(mad(-s1, s1, r), s + s1);
|
||||
float p = mad(2.0f*s, u, -mad(c, -2.0f, piby2_tail));
|
||||
float q = mad(s1, -2.0f, hpiby2_head);
|
||||
float vt = hpiby2_head - (p - q);
|
||||
float v = mad(y, u, y);
|
||||
v = transform ? vt : v;
|
||||
|
||||
float ret = as_float(xs | as_uint(v));
|
||||
ret = aux > 0x3f800000U ? as_float(QNANBITPATT_SP32) : ret;
|
||||
ret = aux == 0x3f800000U ? spiby2 : ret;
|
||||
ret = xexp < -14 ? x : ret;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, asin, float);
|
||||
|
||||
#ifdef cl_khr_fp64
|
||||
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF double asin(double x) {
|
||||
// Computes arcsin(x).
|
||||
// The argument is first reduced by noting that arcsin(x)
|
||||
// is invalid for abs(x) > 1 and arcsin(-x) = -arcsin(x).
|
||||
// For denormal and small arguments arcsin(x) = x to machine
|
||||
// accuracy. Remaining argument ranges are handled as follows.
|
||||
// For abs(x) <= 0.5 use
|
||||
// arcsin(x) = x + x^3*R(x^2)
|
||||
// where R(x^2) is a rational minimax approximation to
|
||||
// (arcsin(x) - x)/x^3.
|
||||
// For abs(x) > 0.5 exploit the identity:
|
||||
// arcsin(x) = pi/2 - 2*arcsin(sqrt(1-x)/2)
|
||||
// together with the above rational approximation, and
|
||||
// reconstruct the terms carefully.
|
||||
|
||||
const double piby2_tail = 6.1232339957367660e-17; /* 0x3c91a62633145c07 */
|
||||
const double hpiby2_head = 7.8539816339744831e-01; /* 0x3fe921fb54442d18 */
|
||||
const double piby2 = 1.5707963267948965e+00; /* 0x3ff921fb54442d18 */
|
||||
|
||||
double y = fabs(x);
|
||||
int xneg = as_int2(x).hi < 0;
|
||||
int xexp = (as_int2(y).hi >> 20) - EXPBIAS_DP64;
|
||||
|
||||
// abs(x) >= 0.5
|
||||
int transform = xexp >= -1;
|
||||
|
||||
double rt = 0.5 * (1.0 - y);
|
||||
double y2 = y * y;
|
||||
double r = transform ? rt : y2;
|
||||
|
||||
// Use a rational approximation for [0.0, 0.5]
|
||||
|
||||
double un = fma(r,
|
||||
fma(r,
|
||||
fma(r,
|
||||
fma(r,
|
||||
fma(r, 0.0000482901920344786991880522822991,
|
||||
0.00109242697235074662306043804220),
|
||||
-0.0549989809235685841612020091328),
|
||||
0.275558175256937652532686256258),
|
||||
-0.445017216867635649900123110649),
|
||||
0.227485835556935010735943483075);
|
||||
|
||||
double ud = fma(r,
|
||||
fma(r,
|
||||
fma(r,
|
||||
fma(r, 0.105869422087204370341222318533,
|
||||
-0.943639137032492685763471240072),
|
||||
2.76568859157270989520376345954),
|
||||
-3.28431505720958658909889444194),
|
||||
1.36491501334161032038194214209);
|
||||
|
||||
double u = r * MATH_DIVIDE(un, ud);
|
||||
|
||||
// Reconstruct asin carefully in transformed region
|
||||
double s = sqrt(r);
|
||||
double sh = as_double(as_ulong(s) & 0xffffffff00000000UL);
|
||||
double c = MATH_DIVIDE(fma(-sh, sh, r), s + sh);
|
||||
double p = fma(2.0*s, u, -fma(-2.0, c, piby2_tail));
|
||||
double q = fma(-2.0, sh, hpiby2_head);
|
||||
double vt = hpiby2_head - (p - q);
|
||||
double v = fma(y, u, y);
|
||||
v = transform ? vt : v;
|
||||
|
||||
v = xexp < -28 ? y : v;
|
||||
v = xexp >= 0 ? as_double(QNANBITPATT_DP64) : v;
|
||||
v = y == 1.0 ? piby2 : v;
|
||||
|
||||
return xneg ? -v : v;
|
||||
}
|
||||
|
||||
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, asin, double);
|
||||
|
||||
#endif // cl_khr_fp64
|
||||
#undef __CLC_FUNCTION
|
||||
#define __CLC_FUNCTION asin
|
||||
#include <clc/math/unary_builtin.inc>
|
||||
|
||||
@@ -8,169 +8,8 @@
|
||||
|
||||
#include <clc/clc.h>
|
||||
#include <clc/clcmacro.h>
|
||||
#include <clc/math/math.h>
|
||||
#include <clc/math/clc_atan.h>
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF float atan(float x)
|
||||
{
|
||||
const float piby2 = 1.5707963267948966f; // 0x3ff921fb54442d18
|
||||
|
||||
uint ux = as_uint(x);
|
||||
uint aux = ux & EXSIGNBIT_SP32;
|
||||
uint sx = ux ^ aux;
|
||||
|
||||
float spiby2 = as_float(sx | as_uint(piby2));
|
||||
|
||||
float v = as_float(aux);
|
||||
|
||||
// Return for NaN
|
||||
float ret = x;
|
||||
|
||||
// 2^26 <= |x| <= Inf => atan(x) is close to piby2
|
||||
ret = aux <= PINFBITPATT_SP32 ? spiby2 : ret;
|
||||
|
||||
// Reduce arguments 2^-19 <= |x| < 2^26
|
||||
|
||||
// 39/16 <= x < 2^26
|
||||
x = -MATH_RECIP(v);
|
||||
float c = 1.57079632679489655800f; // atan(infinity)
|
||||
|
||||
// 19/16 <= x < 39/16
|
||||
int l = aux < 0x401c0000;
|
||||
float xx = MATH_DIVIDE(v - 1.5f, mad(v, 1.5f, 1.0f));
|
||||
x = l ? xx : x;
|
||||
c = l ? 9.82793723247329054082e-01f : c; // atan(1.5)
|
||||
|
||||
// 11/16 <= x < 19/16
|
||||
l = aux < 0x3f980000U;
|
||||
xx = MATH_DIVIDE(v - 1.0f, 1.0f + v);
|
||||
x = l ? xx : x;
|
||||
c = l ? 7.85398163397448278999e-01f : c; // atan(1)
|
||||
|
||||
// 7/16 <= x < 11/16
|
||||
l = aux < 0x3f300000;
|
||||
xx = MATH_DIVIDE(mad(v, 2.0f, -1.0f), 2.0f + v);
|
||||
x = l ? xx : x;
|
||||
c = l ? 4.63647609000806093515e-01f : c; // atan(0.5)
|
||||
|
||||
// 2^-19 <= x < 7/16
|
||||
l = aux < 0x3ee00000;
|
||||
x = l ? v : x;
|
||||
c = l ? 0.0f : c;
|
||||
|
||||
// Core approximation: Remez(2,2) on [-7/16,7/16]
|
||||
|
||||
float s = x * x;
|
||||
float a = mad(s,
|
||||
mad(s, 0.470677934286149214138357545549e-2f, 0.192324546402108583211697690500f),
|
||||
0.296528598819239217902158651186f);
|
||||
|
||||
float b = mad(s,
|
||||
mad(s, 0.299309699959659728404442796915f, 0.111072499995399550138837673349e1f),
|
||||
0.889585796862432286486651434570f);
|
||||
|
||||
float q = x * s * MATH_DIVIDE(a, b);
|
||||
|
||||
float z = c - (q - x);
|
||||
float zs = as_float(sx | as_uint(z));
|
||||
|
||||
ret = aux < 0x4c800000 ? zs : ret;
|
||||
|
||||
// |x| < 2^-19
|
||||
ret = aux < 0x36000000 ? as_float(ux) : ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, atan, float);
|
||||
|
||||
#ifdef cl_khr_fp64
|
||||
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
|
||||
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF double atan(double x)
|
||||
{
|
||||
const double piby2 = 1.5707963267948966e+00; // 0x3ff921fb54442d18
|
||||
|
||||
double v = fabs(x);
|
||||
|
||||
// 2^56 > v > 39/16
|
||||
double a = -1.0;
|
||||
double b = v;
|
||||
// (chi + clo) = arctan(infinity)
|
||||
double chi = 1.57079632679489655800e+00;
|
||||
double clo = 6.12323399573676480327e-17;
|
||||
|
||||
double ta = v - 1.5;
|
||||
double tb = 1.0 + 1.5 * v;
|
||||
int l = v <= 0x1.38p+1; // 39/16 > v > 19/16
|
||||
a = l ? ta : a;
|
||||
b = l ? tb : b;
|
||||
// (chi + clo) = arctan(1.5)
|
||||
chi = l ? 9.82793723247329054082e-01 : chi;
|
||||
clo = l ? 1.39033110312309953701e-17 : clo;
|
||||
|
||||
ta = v - 1.0;
|
||||
tb = 1.0 + v;
|
||||
l = v <= 0x1.3p+0; // 19/16 > v > 11/16
|
||||
a = l ? ta : a;
|
||||
b = l ? tb : b;
|
||||
// (chi + clo) = arctan(1.)
|
||||
chi = l ? 7.85398163397448278999e-01 : chi;
|
||||
clo = l ? 3.06161699786838240164e-17 : clo;
|
||||
|
||||
ta = 2.0 * v - 1.0;
|
||||
tb = 2.0 + v;
|
||||
l = v <= 0x1.6p-1; // 11/16 > v > 7/16
|
||||
a = l ? ta : a;
|
||||
b = l ? tb : b;
|
||||
// (chi + clo) = arctan(0.5)
|
||||
chi = l ? 4.63647609000806093515e-01 : chi;
|
||||
clo = l ? 2.26987774529616809294e-17 : clo;
|
||||
|
||||
l = v <= 0x1.cp-2; // v < 7/16
|
||||
a = l ? v : a;
|
||||
b = l ? 1.0 : b;;
|
||||
chi = l ? 0.0 : chi;
|
||||
clo = l ? 0.0 : clo;
|
||||
|
||||
// Core approximation: Remez(4,4) on [-7/16,7/16]
|
||||
double r = a / b;
|
||||
double s = r * r;
|
||||
double qn = fma(s,
|
||||
fma(s,
|
||||
fma(s,
|
||||
fma(s, 0.142316903342317766e-3,
|
||||
0.304455919504853031e-1),
|
||||
0.220638780716667420e0),
|
||||
0.447677206805497472e0),
|
||||
0.268297920532545909e0);
|
||||
|
||||
double qd = fma(s,
|
||||
fma(s,
|
||||
fma(s,
|
||||
fma(s, 0.389525873944742195e-1,
|
||||
0.424602594203847109e0),
|
||||
0.141254259931958921e1),
|
||||
0.182596787737507063e1),
|
||||
0.804893761597637733e0);
|
||||
|
||||
double q = r * s * qn / qd;
|
||||
r = chi - ((q - clo) - r);
|
||||
|
||||
double z = isnan(x) ? x : piby2;
|
||||
z = v <= 0x1.0p+56 ? r : z;
|
||||
z = v < 0x1.0p-26 ? v : z;
|
||||
return x == v ? z : -z;
|
||||
}
|
||||
|
||||
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, atan, double);
|
||||
|
||||
#endif // cl_khr_fp64
|
||||
|
||||
#ifdef cl_khr_fp16
|
||||
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
_CLC_DEFINE_UNARY_BUILTIN_FP16(atan)
|
||||
|
||||
#endif
|
||||
#undef __CLC_FUNCTION
|
||||
#define __CLC_FUNCTION atan
|
||||
#include <clc/math/unary_builtin.inc>
|
||||
|
||||
Reference in New Issue
Block a user