[mlir][sparse][NFC] Use RewriterBase/OpBuilder when possible

Most functions do not need a PatternRewriter or ConversionPatternRewriter.

Differential Revision: https://reviews.llvm.org/D125466
This commit is contained in:
Matthias Springer
2022-05-13 11:32:14 +02:00
parent 8f42939a07
commit e9fa559097
4 changed files with 342 additions and 368 deletions

View File

@@ -43,8 +43,8 @@ enum class EmitCInterface : bool { Off = false, On = true };
/// Returns the equivalent of `void*` for opaque arguments to the
/// execution engine.
static Type getOpaquePointerType(PatternRewriter &rewriter) {
return LLVM::LLVMPointerType::get(rewriter.getI8Type());
static Type getOpaquePointerType(OpBuilder &builder) {
return LLVM::LLVMPointerType::get(builder.getI8Type());
}
/// Returns a function reference (first hit also inserts into module). Sets
@@ -81,9 +81,8 @@ static func::CallOp createFuncCall(OpBuilder &builder, Operation *op,
/// Replaces the `op` with a `CallOp` to the function reference returned
/// by `getFunc()`.
static func::CallOp replaceOpWithFuncCall(PatternRewriter &rewriter,
Operation *op, StringRef name,
TypeRange resultType,
static func::CallOp replaceOpWithFuncCall(RewriterBase &rewriter, Operation *op,
StringRef name, TypeRange resultType,
ValueRange operands,
EmitCInterface emitCInterface) {
auto fn = getFunc(op, name, resultType, operands, emitCInterface);
@@ -92,7 +91,7 @@ static func::CallOp replaceOpWithFuncCall(PatternRewriter &rewriter,
}
/// Generates dimension size call.
static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op,
static Value genDimSizeCall(OpBuilder &builder, Operation *op,
SparseTensorEncodingAttr &enc, Value src,
int64_t idx) {
// Permute the index according to an optional dimension ordering.
@@ -100,72 +99,67 @@ static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op,
idx = p.getPermutedPosition(idx);
// Generate the call.
StringRef name = "sparseDimSize";
SmallVector<Value, 2> params{src, constantIndex(rewriter, op->getLoc(), idx)};
Type iTp = rewriter.getIndexType();
return createFuncCall(rewriter, op, name, iTp, params, EmitCInterface::Off)
SmallVector<Value, 2> params{src, constantIndex(builder, op->getLoc(), idx)};
Type iTp = builder.getIndexType();
return createFuncCall(builder, op, name, iTp, params, EmitCInterface::Off)
.getResult(0);
}
/// Generates a call into the "swiss army knife" method of the sparse runtime
/// support library for materializing sparse tensors into the computation.
static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op,
static Value genNewCall(OpBuilder &builder, Operation *op,
ArrayRef<Value> params) {
StringRef name = "newSparseTensor";
Type pTp = getOpaquePointerType(rewriter);
return createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On)
Type pTp = getOpaquePointerType(builder);
return createFuncCall(builder, op, name, pTp, params, EmitCInterface::On)
.getResult(0);
}
/// Populates given sizes array from type.
static void sizesFromType(ConversionPatternRewriter &rewriter,
SmallVector<Value, 4> &sizes, Location loc,
ShapedType stp) {
static void sizesFromType(OpBuilder &builder, SmallVector<Value, 4> &sizes,
Location loc, ShapedType stp) {
auto shape = stp.getShape();
for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
sizes.push_back(constantIndex(rewriter, loc, s));
sizes.push_back(constantIndex(builder, loc, s));
}
}
/// Populates given sizes array from source.
static void sizesFromSrc(ConversionPatternRewriter &rewriter,
SmallVector<Value, 4> &sizes, Location loc,
Value src) {
static void sizesFromSrc(OpBuilder &builder, SmallVector<Value, 4> &sizes,
Location loc, Value src) {
unsigned rank = src.getType().cast<ShapedType>().getRank();
for (unsigned i = 0; i < rank; i++)
sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
sizes.push_back(linalg::createOrFoldDimOp(builder, loc, src, i));
}
/// Populates given sizes array from type (for static sizes) and from
/// an already converted into opague pointer source (for dynamic sizes).
static void sizesFromPtr(ConversionPatternRewriter &rewriter,
SmallVector<Value, 4> &sizes, Operation *op,
SparseTensorEncodingAttr &enc, ShapedType stp,
Value src) {
static void sizesFromPtr(OpBuilder &builder, SmallVector<Value, 4> &sizes,
Operation *op, SparseTensorEncodingAttr &enc,
ShapedType stp, Value src) {
Location loc = op->getLoc();
auto shape = stp.getShape();
for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
if (shape[i] == ShapedType::kDynamicSize)
sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i));
sizes.push_back(genDimSizeCall(builder, op, enc, src, i));
else
sizes.push_back(constantIndex(rewriter, loc, shape[i]));
sizes.push_back(constantIndex(builder, loc, shape[i]));
}
/// Generates an uninitialized temporary buffer of the given size and
/// type, but returns it as type `memref<? x $tp>` (rather than as type
/// `memref<$sz x $tp>`).
static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
Value sz, Type tp) {
static Value genAlloca(OpBuilder &builder, Location loc, Value sz, Type tp) {
auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{sz});
return builder.create<memref::AllocaOp>(loc, memTp, ValueRange{sz});
}
/// Generates an uninitialized buffer of the given size and type,
/// but returns it as type `memref<? x $tp>` (rather than as type
/// `memref<$sz x $tp>`). Unlike temporary buffers on the stack,
/// this buffer must be explicitly deallocated by client.
static Value genAlloc(ConversionPatternRewriter &rewriter, Location loc,
Value sz, Type tp) {
static Value genAlloc(RewriterBase &rewriter, Location loc, Value sz, Type tp) {
auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
}
@@ -173,27 +167,24 @@ static Value genAlloc(ConversionPatternRewriter &rewriter, Location loc,
/// Generates an uninitialized temporary buffer of the given size and
/// type, but returns it as type `memref<? x $tp>` (rather than as type
/// `memref<$sz x $tp>`).
static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
unsigned sz, Type tp) {
return genAlloca(rewriter, loc, constantIndex(rewriter, loc, sz), tp);
static Value genAlloca(OpBuilder &builder, Location loc, unsigned sz, Type tp) {
return genAlloca(builder, loc, constantIndex(builder, loc, sz), tp);
}
/// Generates an uninitialized temporary buffer with room for one value
/// of the given type, and returns the `memref<$tp>`.
static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc,
Type tp) {
return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
static Value genAllocaScalar(OpBuilder &builder, Location loc, Type tp) {
return builder.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
}
/// Generates a temporary buffer of the given type and given contents.
static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc,
ValueRange values) {
static Value genBuffer(OpBuilder &builder, Location loc, ValueRange values) {
unsigned sz = values.size();
assert(sz >= 1);
Value buffer = genAlloca(rewriter, loc, sz, values[0].getType());
Value buffer = genAlloca(builder, loc, sz, values[0].getType());
for (unsigned i = 0; i < sz; i++) {
Value idx = constantIndex(rewriter, loc, i);
rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx);
Value idx = constantIndex(builder, loc, i);
builder.create<memref::StoreOp>(loc, values[i], buffer, idx);
}
return buffer;
}
@@ -201,43 +192,43 @@ static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc,
/// Populates parameters required to call the "swiss army knife" method of the
/// sparse runtime support library for materializing sparse tensors into the
/// computation.
static void newParams(ConversionPatternRewriter &rewriter,
SmallVector<Value, 8> &params, Operation *op,
ShapedType stp, SparseTensorEncodingAttr &enc,
Action action, ValueRange szs, Value ptr = Value()) {
static void newParams(OpBuilder &builder, SmallVector<Value, 8> &params,
Operation *op, ShapedType stp,
SparseTensorEncodingAttr &enc, Action action,
ValueRange szs, Value ptr = Value()) {
Location loc = op->getLoc();
ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
unsigned sz = dlt.size();
// Sparsity annotations.
SmallVector<Value, 4> attrs;
for (unsigned i = 0; i < sz; i++)
attrs.push_back(constantDimLevelTypeEncoding(rewriter, loc, dlt[i]));
params.push_back(genBuffer(rewriter, loc, attrs));
attrs.push_back(constantDimLevelTypeEncoding(builder, loc, dlt[i]));
params.push_back(genBuffer(builder, loc, attrs));
// Dimension sizes array of the enveloping tensor. Useful for either
// verification of external data, or for construction of internal data.
params.push_back(genBuffer(rewriter, loc, szs));
params.push_back(genBuffer(builder, loc, szs));
// Dimension order permutation array. This is the "identity" permutation by
// default, or otherwise the "reverse" permutation of a given ordering, so
// that indices can be mapped quickly to the right position.
SmallVector<Value, 4> rev(sz);
if (AffineMap p = enc.getDimOrdering()) {
for (unsigned i = 0; i < sz; i++)
rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i);
rev[p.getDimPosition(i)] = constantIndex(builder, loc, i);
} else {
for (unsigned i = 0; i < sz; i++)
rev[i] = constantIndex(rewriter, loc, i);
rev[i] = constantIndex(builder, loc, i);
}
params.push_back(genBuffer(rewriter, loc, rev));
params.push_back(genBuffer(builder, loc, rev));
// Secondary and primary types encoding.
Type elemTp = stp.getElementType();
params.push_back(constantPointerTypeEncoding(rewriter, loc, enc));
params.push_back(constantIndexTypeEncoding(rewriter, loc, enc));
params.push_back(constantPrimaryTypeEncoding(rewriter, loc, elemTp));
params.push_back(constantPointerTypeEncoding(builder, loc, enc));
params.push_back(constantIndexTypeEncoding(builder, loc, enc));
params.push_back(constantPrimaryTypeEncoding(builder, loc, elemTp));
// User action.
params.push_back(constantAction(rewriter, loc, action));
params.push_back(constantAction(builder, loc, action));
// Payload pointer.
if (!ptr)
ptr = rewriter.create<LLVM::NullOp>(loc, getOpaquePointerType(rewriter));
ptr = builder.create<LLVM::NullOp>(loc, getOpaquePointerType(builder));
params.push_back(ptr);
}
@@ -248,17 +239,16 @@ static void newParams(ConversionPatternRewriter &rewriter,
/// addEltX call generated after is inside the if-then branch.
/// if (tensor[ivs]!=0) {
/// ind = ivs
static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter,
Location loc, Value tensor, Value ind,
ValueRange ivs) {
Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs);
Value cond = genIsNonzero(rewriter, loc, val);
scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false);
rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
static Value genIndexAndValueForDense(OpBuilder &builder, Location loc,
Value tensor, Value ind, ValueRange ivs) {
Value val = builder.create<tensor::ExtractOp>(loc, tensor, ivs);
Value cond = genIsNonzero(builder, loc, val);
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, cond, /*else*/ false);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
unsigned i = 0;
for (auto iv : ivs) {
Value idx = constantIndex(rewriter, loc, i++);
rewriter.create<memref::StoreOp>(loc, iv, ind, idx);
Value idx = constantIndex(builder, loc, i++);
builder.create<memref::StoreOp>(loc, iv, ind, idx);
}
return val;
}
@@ -276,40 +266,38 @@ static void genDelCOOCall(OpBuilder &builder, Operation *op, Type elemTp,
/// val = a[i1,..,ik];
/// if val != 0
/// t->add(val, [i1,..,ik], [p1,..,pk]);
static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op,
Type eltType, Value ptr, Value val, Value ind,
Value perm) {
static void genAddEltCall(OpBuilder &builder, Operation *op, Type eltType,
Value ptr, Value val, Value ind, Value perm) {
SmallString<9> name{"addElt", primaryTypeFunctionSuffix(eltType)};
SmallVector<Value, 4> params{ptr, val, ind, perm};
Type pTp = getOpaquePointerType(rewriter);
createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On);
Type pTp = getOpaquePointerType(builder);
createFuncCall(builder, op, name, pTp, params, EmitCInterface::On);
}
/// Generates a call to `iter->getNext()`. If there is a next element,
/// then it is copied into the out-parameters `ind` and `elemPtr`,
/// and the return value is true. If there isn't a next element, then
/// the memory for `iter` is freed and the return value is false.
static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op,
Value iter, Value ind, Value elemPtr) {
static Value genGetNextCall(OpBuilder &builder, Operation *op, Value iter,
Value ind, Value elemPtr) {
Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
SmallString<10> name{"getNext", primaryTypeFunctionSuffix(elemTp)};
SmallVector<Value, 3> params{iter, ind, elemPtr};
Type i1 = rewriter.getI1Type();
return createFuncCall(rewriter, op, name, i1, params, EmitCInterface::On)
Type i1 = builder.getI1Type();
return createFuncCall(builder, op, name, i1, params, EmitCInterface::On)
.getResult(0);
}
/// If the tensor is a sparse constant, generates and returns the pair of
/// the constants for the indices and the values.
static Optional<std::pair<Value, Value>>
genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc,
Value tensor) {
genSplitSparseConstant(OpBuilder &builder, Location loc, Value tensor) {
if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
DenseElementsAttr indicesAttr = attr.getIndices();
Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
Value indices = builder.create<arith::ConstantOp>(loc, indicesAttr);
DenseElementsAttr valuesAttr = attr.getValues();
Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr);
Value values = builder.create<arith::ConstantOp>(loc, valuesAttr);
return std::make_pair(indices, values);
}
}
@@ -318,26 +306,24 @@ genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc,
/// Generates the code to copy the index at indices[ivs] to ind, and return
/// the value at value[ivs].
static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter,
Location loc, Value indices,
Value values, Value ind, ValueRange ivs,
unsigned rank) {
static Value genIndexAndValueForSparse(OpBuilder &builder, Location loc,
Value indices, Value values, Value ind,
ValueRange ivs, unsigned rank) {
for (unsigned i = 0; i < rank; i++) {
Value idx = constantIndex(rewriter, loc, i);
Value val = rewriter.create<tensor::ExtractOp>(loc, indices,
ValueRange{ivs[0], idx});
val =
rewriter.create<arith::IndexCastOp>(loc, rewriter.getIndexType(), val);
rewriter.create<memref::StoreOp>(loc, val, ind, idx);
Value idx = constantIndex(builder, loc, i);
Value val = builder.create<tensor::ExtractOp>(loc, indices,
ValueRange{ivs[0], idx});
val = builder.create<arith::IndexCastOp>(loc, builder.getIndexType(), val);
builder.create<memref::StoreOp>(loc, val, ind, idx);
}
return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]);
return builder.create<tensor::ExtractOp>(loc, values, ivs[0]);
}
/// Generates code to allocate a tensor of the given type, and zero
/// initialize it. If the tensor type has any dynamic sizes, then the
/// `sizes` parameter should be as filled by sizesFromPtr(); that way
/// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc,
static Value allocDenseTensor(OpBuilder &builder, Location loc,
RankedTensorType tensorTp, ValueRange sizes) {
Type elemTp = tensorTp.getElementType();
auto shape = tensorTp.getShape();
@@ -347,27 +333,26 @@ static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc,
if (shape[i] == ShapedType::kDynamicSize)
dynamicSizes.push_back(sizes[i]);
}
Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes);
Value zero = constantZero(rewriter, loc, elemTp);
rewriter.create<linalg::FillOp>(loc, ValueRange{zero}, ValueRange{mem});
Value mem = builder.create<memref::AllocOp>(loc, memTp, dynamicSizes);
Value zero = constantZero(builder, loc, elemTp);
builder.create<linalg::FillOp>(loc, ValueRange{zero}, ValueRange{mem});
return mem;
}
/// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into
/// the tensor created by allocDenseTensor(). The `rank` is the rank
/// of the `tensor` and the length of `ind`.
static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter,
Location loc, Value elemPtr,
Value tensor, unsigned rank,
Value ind) {
static void insertScalarIntoDenseTensor(OpBuilder &builder, Location loc,
Value elemPtr, Value tensor,
unsigned rank, Value ind) {
SmallVector<Value, 4> ivs;
ivs.reserve(rank);
for (unsigned i = 0; i < rank; i++) {
Value idx = constantIndex(rewriter, loc, i);
ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx));
Value idx = constantIndex(builder, loc, i);
ivs.push_back(builder.create<memref::LoadOp>(loc, ind, idx));
}
Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs);
Value elemV = builder.create<memref::LoadOp>(loc, elemPtr);
builder.create<memref::StoreOp>(loc, elemV, tensor, ivs);
}
//===----------------------------------------------------------------------===//