[clang][bytecode] Start implementing __builtin_bit_cast (#112126)

This is a subset of #68288, with hopefully narrower scope. It does not
support bitcasting to non-integral types yet.
Bitfields are supported, but only if they result in a full byte-sized
final buffer. It does not support casting from null-pointers yet or
casting from indeterminate bits.


The tests are from #68288 and partially from #74775.

The `BitcastBuffer` struct is currently always working in single bits,
but I plan to (try to) optimize this for the common full-byte case.
This commit is contained in:
Timm Baeder
2024-10-31 18:09:40 +01:00
committed by GitHub
parent 155956834a
commit ef2a104c94
14 changed files with 1002 additions and 0 deletions

View File

@@ -81,6 +81,16 @@ public:
Boolean truncate(unsigned TruncBits) const { return *this; }
static Boolean bitcastFromMemory(const std::byte *Buff, unsigned BitWidth) {
// Boolean width is currently always 8 for all supported targets. If this
// changes we need to get the bool width from the target info.
assert(BitWidth == 8);
bool Val = static_cast<bool>(*Buff);
return Boolean(Val);
}
void bitcastToMemory(std::byte *Buff) { std::memcpy(Buff, &V, sizeof(V)); }
void print(llvm::raw_ostream &OS) const { OS << (V ? "true" : "false"); }
std::string toDiagnosticString(const ASTContext &Ctx) const {
std::string NameStr;

View File

@@ -470,6 +470,9 @@ bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
return this->emitDecayPtr(*FromT, *ToT, CE);
}
case CK_LValueToRValueBitCast:
return this->emitBuiltinBitCast(CE);
case CK_IntegralToBoolean:
case CK_FixedPointToBoolean:
case CK_BooleanToSignedIntegral:
@@ -6426,6 +6429,66 @@ bool Compiler<Emitter>::emitDummyPtr(const DeclTy &D, const Expr *E) {
return this->emitDecayPtr(PT_Ptr, PT, E);
return false;
}
return true;
}
// This function is constexpr if and only if To, From, and the types of
// all subobjects of To and From are types T such that...
// (3.1) - is_union_v<T> is false;
// (3.2) - is_pointer_v<T> is false;
// (3.3) - is_member_pointer_v<T> is false;
// (3.4) - is_volatile_v<T> is false; and
// (3.5) - T has no non-static data members of reference type
template <class Emitter>
bool Compiler<Emitter>::emitBuiltinBitCast(const CastExpr *E) {
const Expr *SubExpr = E->getSubExpr();
QualType FromType = SubExpr->getType();
QualType ToType = E->getType();
std::optional<PrimType> ToT = classify(ToType);
assert(!DiscardResult && "Implement DiscardResult mode for bitcasts.");
if (ToType->isNullPtrType()) {
if (!this->discard(SubExpr))
return false;
return this->emitNullPtr(nullptr, E);
}
if (FromType->isNullPtrType() && ToT) {
if (!this->discard(SubExpr))
return false;
return visitZeroInitializer(*ToT, ToType, E);
}
assert(!ToType->isReferenceType());
// Get a pointer to the value-to-cast on the stack.
if (!this->visit(SubExpr))
return false;
if (!ToT || ToT == PT_Ptr) {
// Conversion to an array or record type.
assert(false && "Implement bitcast to pointers.");
}
assert(ToT);
const llvm::fltSemantics *TargetSemantics = nullptr;
if (ToT == PT_Float)
TargetSemantics = &Ctx.getFloatSemantics(ToType);
// Conversion to a primitive type. FromType can be another
// primitive type, or a record/array.
bool ToTypeIsUChar = (ToType->isSpecificBuiltinType(BuiltinType::UChar) ||
ToType->isSpecificBuiltinType(BuiltinType::Char_U));
uint32_t ResultBitWidth = std::max(Ctx.getBitWidth(ToType), 8u);
if (!this->emitBitCast(*ToT, ToTypeIsUChar || ToType->isStdByteType(),
ResultBitWidth, TargetSemantics, E))
return false;
if (DiscardResult)
return this->emitPop(*ToT, E);
return true;
}

View File

@@ -374,6 +374,7 @@ private:
unsigned collectBaseOffset(const QualType BaseType,
const QualType DerivedType);
bool emitLambdaStaticInvokerBody(const CXXMethodDecl *MD);
bool emitBuiltinBitCast(const CastExpr *E);
bool compileConstructor(const CXXConstructorDecl *Ctor);
bool compileDestructor(const CXXDestructorDecl *Dtor);

View File

@@ -135,6 +135,11 @@ public:
return Floating(APFloat(Sem, API));
}
void bitcastToMemory(std::byte *Buff) {
llvm::APInt API = F.bitcastToAPInt();
llvm::StoreIntToMemory(API, (uint8_t *)Buff, bitWidth() / 8);
}
// === Serialization support ===
size_t bytesToSerialize() const {
return sizeof(llvm::fltSemantics *) +

View File

@@ -70,6 +70,7 @@ private:
// The primitive representing the integral.
using ReprT = typename Repr<Bits, Signed>::Type;
ReprT V;
static_assert(std::is_trivially_copyable_v<ReprT>);
/// Primitive representing limits.
static const auto Min = std::numeric_limits<ReprT>::min();
@@ -154,6 +155,18 @@ public:
return Compare(V, RHS.V);
}
void bitcastToMemory(std::byte *Dest) const {
std::memcpy(Dest, &V, sizeof(V));
}
static Integral bitcastFromMemory(const std::byte *Src, unsigned BitWidth) {
assert(BitWidth == sizeof(ReprT) * 8);
ReprT V;
std::memcpy(&V, Src, sizeof(ReprT));
return Integral(V);
}
std::string toDiagnosticString(const ASTContext &Ctx) const {
std::string NameStr;
llvm::raw_string_ostream OS(NameStr);

View File

@@ -171,6 +171,12 @@ public:
return IntegralAP<false>(Copy);
}
void bitcastToMemory(std::byte *Dest) const { assert(false); }
static IntegralAP bitcastFromMemory(const std::byte *Src, unsigned BitWidth) {
return IntegralAP();
}
ComparisonCategoryResult compare(const IntegralAP &RHS) const {
assert(Signed == RHS.isSigned());
assert(bitWidth() == RHS.bitWidth());

View File

@@ -1574,6 +1574,23 @@ bool CastPointerIntegralAPS(InterpState &S, CodePtr OpPC, uint32_t BitWidth) {
return true;
}
bool CheckBitCast(InterpState &S, CodePtr OpPC, bool HasIndeterminateBits,
bool TargetIsUCharOrByte) {
// This is always fine.
if (!HasIndeterminateBits)
return true;
// Indeterminate bits can only be bitcast to unsigned char or std::byte.
if (TargetIsUCharOrByte)
return true;
const Expr *E = S.Current->getExpr(OpPC);
QualType ExprType = E->getType();
S.FFDiag(E, diag::note_constexpr_bit_cast_indet_dest)
<< ExprType << S.getLangOpts().CharIsSigned << E->getSourceRange();
return false;
}
// https://github.com/llvm/llvm-project/issues/102513
#if defined(_WIN32) && !defined(__clang__) && !defined(NDEBUG)
#pragma optimize("", off)

View File

@@ -20,6 +20,7 @@
#include "Floating.h"
#include "Function.h"
#include "FunctionPointer.h"
#include "InterpBuiltinBitCast.h"
#include "InterpFrame.h"
#include "InterpStack.h"
#include "InterpState.h"
@@ -162,6 +163,8 @@ bool CallPtr(InterpState &S, CodePtr OpPC, uint32_t ArgSize,
const CallExpr *CE);
bool CheckLiteralType(InterpState &S, CodePtr OpPC, const Type *T);
bool InvalidShuffleVectorIndex(InterpState &S, CodePtr OpPC, uint32_t Index);
bool CheckBitCast(InterpState &S, CodePtr OpPC, bool HasIndeterminateBits,
bool TargetIsUCharOrByte);
template <typename T>
static bool handleOverflow(InterpState &S, CodePtr OpPC, const T &SrcValue) {
@@ -3039,6 +3042,34 @@ bool CheckNewTypeMismatchArray(InterpState &S, CodePtr OpPC, const Expr *E) {
return CheckNewTypeMismatch(S, OpPC, E, static_cast<uint64_t>(Size));
}
bool InvalidNewDeleteExpr(InterpState &S, CodePtr OpPC, const Expr *E);
template <PrimType Name, class T = typename PrimConv<Name>::T>
inline bool BitCast(InterpState &S, CodePtr OpPC, bool TargetIsUCharOrByte,
uint32_t ResultBitWidth, const llvm::fltSemantics *Sem) {
const Pointer &FromPtr = S.Stk.pop<Pointer>();
if (!CheckLoad(S, OpPC, FromPtr))
return false;
size_t BuffSize = ResultBitWidth / 8;
llvm::SmallVector<std::byte> Buff(BuffSize);
bool HasIndeterminateBits = false;
if (!DoBitCast(S, OpPC, FromPtr, Buff.data(), BuffSize, HasIndeterminateBits))
return false;
if (!CheckBitCast(S, OpPC, HasIndeterminateBits, TargetIsUCharOrByte))
return false;
if constexpr (std::is_same_v<T, Floating>) {
assert(false && "Implement bitcasting to a floating type");
} else {
assert(!Sem);
S.Stk.push<T>(T::bitcastFromMemory(Buff.data(), ResultBitWidth));
}
return true;
}
//===----------------------------------------------------------------------===//
// Read opcode arguments
//===----------------------------------------------------------------------===//

View File

@@ -10,6 +10,7 @@
#include "Compiler.h"
#include "EvalEmitter.h"
#include "Interp.h"
#include "InterpBuiltinBitCast.h"
#include "PrimType.h"
#include "clang/AST/OSLog.h"
#include "clang/AST/RecordLayout.h"

View File

@@ -0,0 +1,367 @@
//===-------------------- InterpBuiltinBitCast.cpp --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "InterpBuiltinBitCast.h"
#include "Boolean.h"
#include "Context.h"
#include "FixedPoint.h"
#include "Floating.h"
#include "Integral.h"
#include "IntegralAP.h"
#include "InterpState.h"
#include "MemberPointer.h"
#include "Pointer.h"
#include "Record.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/BitVector.h"
#include <bitset>
using namespace clang;
using namespace clang::interp;
/// Used to iterate over pointer fields.
using DataFunc =
llvm::function_ref<bool(const Pointer &P, PrimType Ty, size_t BitOffset)>;
#define BITCAST_TYPE_SWITCH(Expr, B) \
do { \
switch (Expr) { \
TYPE_SWITCH_CASE(PT_Sint8, B) \
TYPE_SWITCH_CASE(PT_Uint8, B) \
TYPE_SWITCH_CASE(PT_Sint16, B) \
TYPE_SWITCH_CASE(PT_Uint16, B) \
TYPE_SWITCH_CASE(PT_Sint32, B) \
TYPE_SWITCH_CASE(PT_Uint32, B) \
TYPE_SWITCH_CASE(PT_Sint64, B) \
TYPE_SWITCH_CASE(PT_Uint64, B) \
TYPE_SWITCH_CASE(PT_IntAP, B) \
TYPE_SWITCH_CASE(PT_IntAPS, B) \
TYPE_SWITCH_CASE(PT_Bool, B) \
default: \
llvm_unreachable("Unhandled bitcast type"); \
} \
} while (0)
/// Float is a special case that sometimes needs the floating point semantics
/// to be available.
#define BITCAST_TYPE_SWITCH_WITH_FLOAT(Expr, B) \
do { \
switch (Expr) { \
TYPE_SWITCH_CASE(PT_Sint8, B) \
TYPE_SWITCH_CASE(PT_Uint8, B) \
TYPE_SWITCH_CASE(PT_Sint16, B) \
TYPE_SWITCH_CASE(PT_Uint16, B) \
TYPE_SWITCH_CASE(PT_Sint32, B) \
TYPE_SWITCH_CASE(PT_Uint32, B) \
TYPE_SWITCH_CASE(PT_Sint64, B) \
TYPE_SWITCH_CASE(PT_Uint64, B) \
TYPE_SWITCH_CASE(PT_IntAP, B) \
TYPE_SWITCH_CASE(PT_IntAPS, B) \
TYPE_SWITCH_CASE(PT_Bool, B) \
TYPE_SWITCH_CASE(PT_Float, B) \
default: \
llvm_unreachable("Unhandled bitcast type"); \
} \
} while (0)
static bool bitof(std::byte B, unsigned BitIndex) {
return (B & (std::byte{1} << BitIndex)) != std::byte{0};
}
static void swapBytes(std::byte *M, size_t N) {
for (size_t I = 0; I != (N / 2); ++I)
std::swap(M[I], M[N - 1 - I]);
}
/// Track what bits have been initialized to known values and which ones
/// have indeterminate value.
/// All offsets are in bits.
struct BitcastBuffer {
llvm::BitVector Data;
BitcastBuffer() = default;
size_t size() const { return Data.size(); }
const std::byte *data() const {
unsigned NBytes = Data.size() / 8;
unsigned BitVectorWordSize = sizeof(uintptr_t);
bool FullWord = (NBytes % BitVectorWordSize == 0);
// llvm::BitVector uses 64-bit fields internally, so when we have
// fewer bytes than that, we need to compensate for that on
// big endian hosts.
unsigned DataPlus;
if (llvm::sys::IsBigEndianHost)
DataPlus = BitVectorWordSize - (NBytes % BitVectorWordSize);
else
DataPlus = 0;
return reinterpret_cast<const std::byte *>(Data.getData().data()) +
(FullWord ? 0 : DataPlus);
}
bool allInitialized() const {
// FIXME: Implement.
return true;
}
void pushData(const std::byte *data, size_t BitOffset, size_t BitWidth,
bool BigEndianTarget) {
Data.reserve(BitOffset + BitWidth);
bool OnlyFullBytes = BitWidth % 8 == 0;
unsigned NBytes = BitWidth / 8;
size_t BitsHandled = 0;
// Read all full bytes first
for (size_t I = 0; I != NBytes; ++I) {
std::byte B =
BigEndianTarget ? data[NBytes - OnlyFullBytes - I] : data[I];
for (unsigned X = 0; X != 8; ++X) {
Data.push_back(bitof(B, X));
++BitsHandled;
}
}
if (BitsHandled == BitWidth)
return;
// Rest of the bits.
assert((BitWidth - BitsHandled) < 8);
std::byte B = BigEndianTarget ? data[0] : data[NBytes];
for (size_t I = 0, E = (BitWidth - BitsHandled); I != E; ++I) {
Data.push_back(bitof(B, I));
++BitsHandled;
}
assert(BitsHandled == BitWidth);
}
};
/// We use this to recursively iterate over all fields and elemends of a pointer
/// and extract relevant data for a bitcast.
static bool enumerateData(const Pointer &P, const Context &Ctx, size_t Offset,
DataFunc F) {
const Descriptor *FieldDesc = P.getFieldDesc();
assert(FieldDesc);
// Primitives.
if (FieldDesc->isPrimitive())
return F(P, FieldDesc->getPrimType(), Offset);
// Primitive arrays.
if (FieldDesc->isPrimitiveArray()) {
bool BigEndianTarget = Ctx.getASTContext().getTargetInfo().isBigEndian();
QualType ElemType = FieldDesc->getElemQualType();
size_t ElemSizeInBits = Ctx.getASTContext().getTypeSize(ElemType);
PrimType ElemT = *Ctx.classify(ElemType);
bool Ok = true;
for (unsigned I = 0; I != FieldDesc->getNumElems(); ++I) {
unsigned Index = BigEndianTarget ? (FieldDesc->getNumElems() - 1 - I) : I;
Ok = Ok && F(P.atIndex(Index), ElemT, Offset);
Offset += ElemSizeInBits;
}
return Ok;
}
// Composite arrays.
if (FieldDesc->isCompositeArray()) {
bool BigEndianTarget = Ctx.getASTContext().getTargetInfo().isBigEndian();
QualType ElemType = FieldDesc->getElemQualType();
size_t ElemSizeInBits = Ctx.getASTContext().getTypeSize(ElemType);
for (unsigned I = 0; I != FieldDesc->getNumElems(); ++I) {
unsigned Index = BigEndianTarget ? (FieldDesc->getNumElems() - 1 - I) : I;
enumerateData(P.atIndex(Index).narrow(), Ctx, Offset, F);
Offset += ElemSizeInBits;
}
return true;
}
// Records.
if (FieldDesc->isRecord()) {
bool BigEndianTarget = Ctx.getASTContext().getTargetInfo().isBigEndian();
const Record *R = FieldDesc->ElemRecord;
const ASTRecordLayout &Layout =
Ctx.getASTContext().getASTRecordLayout(R->getDecl());
bool Ok = true;
auto enumerateFields = [&]() -> void {
for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
const Record::Field *Fi =
R->getField(BigEndianTarget ? (N - 1 - I) : I);
Pointer Elem = P.atField(Fi->Offset);
size_t BitOffset =
Offset + Layout.getFieldOffset(Fi->Decl->getFieldIndex());
Ok = Ok && enumerateData(Elem, Ctx, BitOffset, F);
}
};
auto enumerateBases = [&]() -> void {
for (unsigned I = 0, N = R->getNumBases(); I != N; ++I) {
const Record::Base *B = R->getBase(BigEndianTarget ? (N - 1 - I) : I);
Pointer Elem = P.atField(B->Offset);
CharUnits ByteOffset =
Layout.getBaseClassOffset(cast<CXXRecordDecl>(B->Decl));
size_t BitOffset = Offset + Ctx.getASTContext().toBits(ByteOffset);
Ok = Ok && enumerateData(Elem, Ctx, BitOffset, F);
}
};
if (BigEndianTarget) {
enumerateFields();
enumerateBases();
} else {
enumerateBases();
enumerateFields();
}
return Ok;
}
llvm_unreachable("Unhandled data type");
}
static bool enumeratePointerFields(const Pointer &P, const Context &Ctx,
DataFunc F) {
return enumerateData(P, Ctx, 0, F);
}
// This function is constexpr if and only if To, From, and the types of
// all subobjects of To and From are types T such that...
// (3.1) - is_union_v<T> is false;
// (3.2) - is_pointer_v<T> is false;
// (3.3) - is_member_pointer_v<T> is false;
// (3.4) - is_volatile_v<T> is false; and
// (3.5) - T has no non-static data members of reference type
//
// NOTE: This is a version of checkBitCastConstexprEligibilityType() in
// ExprConstant.cpp.
static bool CheckBitcastType(InterpState &S, CodePtr OpPC, QualType T,
bool IsToType) {
enum {
E_Union = 0,
E_Pointer,
E_MemberPointer,
E_Volatile,
E_Reference,
};
enum { C_Member, C_Base };
auto diag = [&](int Reason) -> bool {
const Expr *E = S.Current->getExpr(OpPC);
S.FFDiag(E, diag::note_constexpr_bit_cast_invalid_type)
<< static_cast<int>(IsToType) << (Reason == E_Reference) << Reason
<< E->getSourceRange();
return false;
};
auto note = [&](int Construct, QualType NoteType, SourceRange NoteRange) {
S.Note(NoteRange.getBegin(), diag::note_constexpr_bit_cast_invalid_subtype)
<< NoteType << Construct << T << NoteRange;
return false;
};
T = T.getCanonicalType();
if (T->isUnionType())
return diag(E_Union);
if (T->isPointerType())
return diag(E_Pointer);
if (T->isMemberPointerType())
return diag(E_MemberPointer);
if (T.isVolatileQualified())
return diag(E_Volatile);
if (const RecordDecl *RD = T->getAsRecordDecl()) {
if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
for (const CXXBaseSpecifier &BS : CXXRD->bases()) {
if (!CheckBitcastType(S, OpPC, BS.getType(), IsToType))
return note(C_Base, BS.getType(), BS.getBeginLoc());
}
}
for (const FieldDecl *FD : RD->fields()) {
if (FD->getType()->isReferenceType())
return diag(E_Reference);
if (!CheckBitcastType(S, OpPC, FD->getType(), IsToType))
return note(C_Member, FD->getType(), FD->getSourceRange());
}
}
if (T->isArrayType() &&
!CheckBitcastType(S, OpPC, S.getASTContext().getBaseElementType(T),
IsToType))
return false;
return true;
}
static bool readPointerToBuffer(const Context &Ctx, const Pointer &FromPtr,
BitcastBuffer &Buffer, bool ReturnOnUninit) {
const ASTContext &ASTCtx = Ctx.getASTContext();
bool SwapData = (ASTCtx.getTargetInfo().isLittleEndian() !=
llvm::sys::IsLittleEndianHost);
bool BigEndianTarget = ASTCtx.getTargetInfo().isBigEndian();
return enumeratePointerFields(
FromPtr, Ctx,
[&](const Pointer &P, PrimType T, size_t BitOffset) -> bool {
if (!P.isInitialized()) {
assert(false && "Implement uninitialized value tracking");
return ReturnOnUninit;
}
assert(P.isInitialized());
// nullptr_t is a PT_Ptr for us, but it's still not std::is_pointer_v.
if (T == PT_Ptr)
assert(false && "Implement casting to pointer types");
CharUnits ObjectReprChars = ASTCtx.getTypeSizeInChars(P.getType());
unsigned BitWidth;
if (const FieldDecl *FD = P.getField(); FD && FD->isBitField())
BitWidth = FD->getBitWidthValue(ASTCtx);
else
BitWidth = ASTCtx.toBits(ObjectReprChars);
llvm::SmallVector<std::byte> Buff(ObjectReprChars.getQuantity());
BITCAST_TYPE_SWITCH_WITH_FLOAT(T, {
T Val = P.deref<T>();
Val.bitcastToMemory(Buff.data());
});
if (SwapData)
swapBytes(Buff.data(), ObjectReprChars.getQuantity());
if (BitWidth != (Buff.size() * 8) && BigEndianTarget) {
Buffer.pushData(Buff.data() + (Buff.size() - 1 - (BitWidth / 8)),
BitOffset, BitWidth, BigEndianTarget);
} else {
Buffer.pushData(Buff.data(), BitOffset, BitWidth, BigEndianTarget);
}
return true;
});
}
bool clang::interp::DoBitCast(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
std::byte *Buff, size_t BuffSize,
bool &HasIndeterminateBits) {
assert(Ptr.isLive());
assert(Ptr.isBlockPointer());
assert(Buff);
BitcastBuffer Buffer;
if (!CheckBitcastType(S, OpPC, Ptr.getType(), /*IsToType=*/false))
return false;
bool Success = readPointerToBuffer(S.getContext(), Ptr, Buffer,
/*ReturnOnUninit=*/false);
assert(Buffer.size() == BuffSize * 8);
HasIndeterminateBits = !Buffer.allInitialized();
std::memcpy(Buff, Buffer.data(), BuffSize);
return Success;
}

View File

@@ -0,0 +1,26 @@
//===------------------ InterpBuiltinBitCast.h ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_INTERP_BUILITN_BIT_CAST_H
#define LLVM_CLANG_AST_INTERP_BUILITN_BIT_CAST_H
#include <cstddef>
namespace clang {
namespace interp {
class Pointer;
class InterpState;
class CodePtr;
bool DoBitCast(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
std::byte *Buff, size_t BuffSize, bool &HasIndeterminateBits);
} // namespace interp
} // namespace clang
#endif

View File

@@ -837,3 +837,13 @@ def CheckNewTypeMismatchArray : Opcode {
def IsConstantContext: Opcode;
def CheckAllocations : Opcode;
def BitCastTypeClass : TypeClass {
let Types = [Uint8, Sint8, Uint16, Sint16, Uint32, Sint32, Uint64, Sint64, IntAP, IntAPS, Bool, Float];
}
def BitCast : Opcode {
let Types = [BitCastTypeClass];
let Args = [ArgBool, ArgUint32, ArgFltSemantics];
let HasGroup = 1;
}

View File

@@ -74,6 +74,7 @@ add_clang_library(clangAST
ByteCode/Function.cpp
ByteCode/FunctionPointer.cpp
ByteCode/InterpBuiltin.cpp
ByteCode/InterpBuiltinBitCast.cpp
ByteCode/Floating.cpp
ByteCode/EvaluationResult.cpp
ByteCode/DynamicAllocator.cpp

View File

@@ -0,0 +1,451 @@
// RUN: %clang_cc1 -verify=ref,both -std=c++2a -fsyntax-only %s
// RUN: %clang_cc1 -verify=ref,both -std=c++2a -fsyntax-only -triple aarch64_be-linux-gnu %s
// RUN: %clang_cc1 -verify=ref,both -std=c++2a -fsyntax-only -triple powerpc64le-unknown-unknown -mabi=ieeelongdouble %s
// RUN: %clang_cc1 -verify=ref,both -std=c++2a -fsyntax-only -triple powerpc64-unknown-unknown -mabi=ieeelongdouble %s
// RUN: %clang_cc1 -verify=expected,both -std=c++2a -fsyntax-only -fexperimental-new-constant-interpreter %s
// RUN: %clang_cc1 -verify=expected,both -std=c++2a -fsyntax-only -triple aarch64_be-linux-gnu -fexperimental-new-constant-interpreter %s
// RUN: %clang_cc1 -verify=expected,both -std=c++2a -fsyntax-only -fexperimental-new-constant-interpreter -triple powerpc64le-unknown-unknown -mabi=ieeelongdouble %s
// RUN: %clang_cc1 -verify=expected,both -std=c++2a -fsyntax-only -fexperimental-new-constant-interpreter -triple powerpc64-unknown-unknown -mabi=ieeelongdouble %s
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
# define LITTLE_END 1
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
# define LITTLE_END 0
#else
# error "huh?"
#endif
typedef decltype(nullptr) nullptr_t;
typedef __INTPTR_TYPE__ intptr_t;
static_assert(sizeof(int) == 4);
static_assert(sizeof(long long) == 8);
template <class To, class From>
constexpr To bit_cast(const From &from) {
static_assert(sizeof(To) == sizeof(From));
return __builtin_bit_cast(To, from);
}
template <class Intermediate, class Init>
constexpr bool check_round_trip(const Init &init) {
return bit_cast<Init>(bit_cast<Intermediate>(init)) == init;
}
template <class Intermediate, class Init>
constexpr Init round_trip(const Init &init) {
return bit_cast<Init>(bit_cast<Intermediate>(init));
}
namespace std {
enum byte : unsigned char {};
} // namespace std
using uint8_t = unsigned char;
template<int N>
struct bytes {
using size_t = unsigned int;
unsigned char d[N];
constexpr unsigned char &operator[](size_t index) {
if (index < N)
return d[index];
}
};
template <int N, typename T = unsigned char, int Pad = 0>
struct bits {
T : Pad;
T bits : N;
constexpr bool operator==(const T& rhs) const {
return bits == rhs;
}
};
template <int N, typename T, int P>
constexpr bool operator==(const struct bits<N, T, P>& lhs, const struct bits<N, T, P>& rhs) {
return lhs.bits == rhs.bits;
}
namespace simple {
constexpr int A = __builtin_bit_cast(int, 10);
static_assert(A == 10);
static_assert(__builtin_bit_cast(unsigned, 1.0F) == 1065353216);
struct Bytes {
char a, b, c, d;
};
constexpr unsigned B = __builtin_bit_cast(unsigned, Bytes{10, 12, 13, 14});
static_assert(B == (LITTLE_END ? 235736074 : 168561934));
constexpr unsigned C = __builtin_bit_cast(unsigned, (_BitInt(32))12);
static_assert(C == 12);
struct BitInts {
_BitInt(16) a;
_BitInt(16) b;
};
constexpr unsigned D = __builtin_bit_cast(unsigned, BitInts{12, 13});
static_assert(D == (LITTLE_END ? 851980 : 786445));
static_assert(__builtin_bit_cast(char, true) == 1);
static_assert(check_round_trip<unsigned>((int)-1));
static_assert(check_round_trip<unsigned>((int)0x12345678));
static_assert(check_round_trip<unsigned>((int)0x87654321));
static_assert(check_round_trip<unsigned>((int)0x0C05FEFE));
// static_assert(round_trip<float>((int)0x0C05FEFE));
/// This works in GCC and in the bytecode interpreter, but the current interpreter
/// diagnoses it.
static_assert(__builtin_bit_cast(intptr_t, nullptr) == 0); // ref-error {{not an integral constant expression}} \
// ref-note {{indeterminate value can only initialize an object}}
}
namespace Fail {
constexpr int a = 1/0; // both-error {{must be initialized by a constant expression}} \
// both-note {{division by zero}} \
// both-note {{declared here}}
constexpr int b = __builtin_bit_cast(int, a); // both-error {{must be initialized by a constant expression}} \
// both-note {{initializer of 'a' is not a constant expression}}
}
namespace NullPtr {
constexpr nullptr_t N = __builtin_bit_cast(nullptr_t, (intptr_t)1u);
static_assert(N == nullptr);
static_assert(__builtin_bit_cast(nullptr_t, (_BitInt(sizeof(void*) * 8))12) == __builtin_bit_cast(nullptr_t, (unsigned _BitInt(sizeof(void*) * 8))0));
static_assert(__builtin_bit_cast(nullptr_t, nullptr) == nullptr);
}
namespace bitint {
constexpr _BitInt(sizeof(int) * 8) BI = ~0;
constexpr unsigned int I = __builtin_bit_cast(unsigned int, BI);
static_assert(I == ~0u, "");
constexpr _BitInt(sizeof(int) * 8) IB = __builtin_bit_cast(_BitInt(sizeof(int) * 8), I); // ref-error {{must be initialized by a constant expression}} \
// ref-note {{constexpr bit cast involving type '_BitInt(32)' is not yet supported}} \
// ref-note {{declared here}}
static_assert(IB == ~0u, ""); // ref-error {{not an integral constant expression}} \
// ref-note {{initializer of 'IB' is not a constant expression}}
}
namespace BitFields {
struct BitFields {
unsigned a : 2;
unsigned b : 30;
};
constexpr unsigned A = __builtin_bit_cast(unsigned, BitFields{3, 16}); // ref-error {{must be initialized by a constant expression}} \
// ref-note {{not yet supported}} \
// ref-note {{declared here}}
static_assert(A == (LITTLE_END ? 67 : 3221225488)); // ref-error {{not an integral constant expression}} \
// ref-note {{initializer of 'A'}}
void bitfield_indeterminate() {
struct BF { unsigned char z : 2; };
enum byte : unsigned char {};
constexpr BF bf = {0x3};
/// Requires bitcasts to composite types.
// static_assert(bit_cast<bits<2>>(bf).bits == bf.z);
// static_assert(bit_cast<unsigned char>(bf));
#if 0
// static_assert(__builtin_bit_cast(byte, bf));
struct M {
// expected-note@+1 {{subobject declared here}}
unsigned char mem[sizeof(BF)];
};
// expected-error@+2 {{initialized by a constant expression}}
// expected-note@+1 {{not initialized}}
constexpr M m = bit_cast<M>(bf);
constexpr auto f = []() constexpr {
// bits<24, unsigned int, LITTLE_END ? 0 : 8> B = {0xc0ffee};
constexpr struct { unsigned short b1; unsigned char b0; } B = {0xc0ff, 0xee};
return bit_cast<bytes<4>>(B);
};
static_assert(f()[0] + f()[1] + f()[2] == 0xc0 + 0xff + 0xee);
{
// expected-error@+2 {{initialized by a constant expression}}
// expected-note@+1 {{read of uninitialized object is not allowed in a constant expression}}
constexpr auto _bad = f()[3];
}
struct B {
unsigned short s0 : 8;
unsigned short s1 : 8;
std::byte b0 : 4;
std::byte b1 : 4;
std::byte b2 : 4;
};
constexpr auto g = [f]() constexpr {
return bit_cast<B>(f());
};
static_assert(g().s0 + g().s1 + g().b0 + g().b1 == 0xc0 + 0xff + 0xe + 0xe);
{
// expected-error@+2 {{initialized by a constant expression}}
// expected-note@+1 {{read of uninitialized object is not allowed in a constant expression}}
constexpr auto _bad = g().b2;
}
#endif
}
}
namespace Classes {
class A {
public:
char a[2];
};
class B : public A {
public:
char b[2];
};
static_assert(__builtin_bit_cast(int, B{{0, 0},{0, 0}}) == 0);
static_assert(__builtin_bit_cast(int, B{{13, 0},{0, 0}}) == (LITTLE_END ? 13 : 218103808));
static_assert(__builtin_bit_cast(int, B{{13, 7},{12, 20}}) == (LITTLE_END ? 336332557 : 218565652));
class Ref {
public:
const int &a;
constexpr Ref(const int &a) : a(a) {}
};
constexpr int I = 12;
typedef __INTPTR_TYPE__ intptr_t;
static_assert(__builtin_bit_cast(intptr_t, Ref{I}) == 0); // both-error {{not an integral constant expression}} \
// both-note {{bit_cast from a type with a reference member is not allowed in a constant expression}}
class C : public A {
public:
constexpr C() : A{1,2} {}
virtual constexpr int get() {
return 4;
}
};
static_assert(__builtin_bit_cast(_BitInt(sizeof(C) * 8), C()) == 0); // both-error {{source type must be trivially copyable}}
class D : virtual A {};
static_assert(__builtin_bit_cast(_BitInt(sizeof(D) * 8), D()) == 0); // both-error {{source type must be trivially copyable}}
class F {
public:
char f[2];
};
class E : public A, public F {
public:
constexpr E() : A{1,2}, F{3,4}, e{5,6,7,8} {}
char e[4];
};
static_assert(__builtin_bit_cast(long long, E()) == (LITTLE_END ? 578437695752307201 : 72623859790382856));
}
struct int_splicer {
unsigned x;
unsigned y;
constexpr int_splicer() : x(1), y(2) {}
constexpr int_splicer(unsigned x, unsigned y) : x(x), y(y) {}
constexpr bool operator==(const int_splicer &other) const {
return other.x == x && other.y == y;
}
};
constexpr int_splicer splice(0x0C05FEFE, 0xCAFEBABE);
#if 0
static_assert(bit_cast<unsigned long long>(splice) == (LITTLE_END
? 0xCAFEBABE0C05FEFE
: 0x0C05FEFECAFEBABE));
constexpr int_splicer IS = bit_cast<int_splicer>(0xCAFEBABE0C05FEFE);
static_assert(bit_cast<int_splicer>(0xCAFEBABE0C05FEFE).x == (LITTLE_END
? 0x0C05FEFE
: 0xCAFEBABE));
static_assert(round_trip<unsigned long long>(splice));
static_assert(round_trip<long long>(splice));
#endif
/// ---------------------------------------------------------------------------
/// From here on, it's things copied from test/SemaCXX/constexpr-builtin-bit.cast.cpp
void test_int() {
static_assert(round_trip<unsigned>((int)-1));
static_assert(round_trip<unsigned>((int)0x12345678));
static_assert(round_trip<unsigned>((int)0x87654321));
static_assert(round_trip<unsigned>((int)0x0C05FEFE));
}
void test_array() {
constexpr unsigned char input[] = {0xCA, 0xFE, 0xBA, 0xBE};
constexpr unsigned expected = LITTLE_END ? 0xBEBAFECA : 0xCAFEBABE;
static_assert(bit_cast<unsigned>(input) == expected);
/// Same things but with a composite array.
struct US { unsigned char I; };
constexpr US input2[] = {{0xCA}, {0xFE}, {0xBA}, {0xBE}};
static_assert(bit_cast<unsigned>(input2) == expected);
}
void test_record() {
struct int_splicer {
unsigned x;
unsigned y;
constexpr bool operator==(const int_splicer &other) const {
return other.x == x && other.y == y;
}
};
constexpr int_splicer splice{0x0C05FEFE, 0xCAFEBABE};
static_assert(bit_cast<unsigned long long>(splice) == (LITTLE_END
? 0xCAFEBABE0C05FEFE
: 0x0C05FEFECAFEBABE));
/// FIXME: Bit casts to composite types.
// static_assert(bit_cast<int_splicer>(0xCAFEBABE0C05FEFE).x == (LITTLE_END
// ? 0x0C05FEFE
// : 0xCAFEBABE));
// static_assert(check_round_trip<unsigned long long>(splice));
// static_assert(check_round_trip<long long>(splice));
struct base2 {
};
struct base3 {
unsigned z;
};
struct bases : int_splicer, base2, base3 {
unsigned doublez;
};
struct tuple4 {
unsigned x, y, z, doublez;
bool operator==(tuple4 const &other) const = default;
constexpr bool operator==(bases const &other) const {
return x == other.x && y == other.y &&
z == other.z && doublez == other.doublez;
}
};
// constexpr bases b = {{1, 2}, {}, {3}, 4};
// constexpr tuple4 t4 = bit_cast<tuple4>(b);
// static_assert(t4 == tuple4{1, 2, 3, 4});
// static_assert(round_trip<tuple4>(b));
// constexpr auto b2 = bit_cast<bases>(t4);
// static_assert(t4 == b2);
}
void test_partially_initialized() {
struct pad {
signed char x;
int y;
};
struct no_pad {
signed char x;
signed char p1, p2, p3;
int y;
};
static_assert(sizeof(pad) == sizeof(no_pad));
#if 0
constexpr pad pir{4, 4};
constexpr int piw = bit_cast<no_pad>(pir).x; // both-error {{constexpr variable 'piw' must be initialized by a constant expression}} \
// both-note {{in call to 'bit_cast<no_pad, pad>(pir)'}}
constexpr no_pad bad = bit_cast<no_pad>(pir); // both-error {{constexpr variable 'bad' must be initialized by a constant expression}} \
// both-note {{in call to 'bit_cast<no_pad, pad>(pir)'}}
// constexpr pad fine = bit_cast<pad>(no_pad{1, 2, 3, 4, 5});
// static_assert(fine.x == 1 && fine.y == 5);
#endif
}
void bad_types() {
union X {
int x;
};
static_assert(__builtin_bit_cast(int, X{0}) == 0); // both-error {{not an integral constant expression}} \
// both-note {{bit_cast from a union type is not allowed in a constant expression}}
#if 0
struct G {
int g;
};
// expected-error@+2 {{constexpr variable 'g' must be initialized by a constant expression}}
// expected-note@+1 {{bit_cast from a union type is not allowed in a constant expression}}
constexpr G g = __builtin_bit_cast(G, X{0});
// expected-error@+2 {{constexpr variable 'x' must be initialized by a constant expression}}
// expected-note@+1 {{bit_cast to a union type is not allowed in a constant expression}}
constexpr X x = __builtin_bit_cast(X, G{0});
#endif
struct has_pointer {
int *ptr; // both-note {{invalid type 'int *' is a member of 'has_pointer'}}
};
constexpr intptr_t ptr = __builtin_bit_cast(intptr_t, has_pointer{0}); // both-error {{constexpr variable 'ptr' must be initialized by a constant expression}} \
// both-note {{bit_cast from a pointer type is not allowed in a constant expression}}
#if 0
// expected-error@+2 {{constexpr variable 'hptr' must be initialized by a constant expression}}
// expected-note@+1 {{bit_cast to a pointer type is not allowed in a constant expression}}
constexpr has_pointer hptr = __builtin_bit_cast(has_pointer, 0ul);
#endif
}
void test_array_fill() {
constexpr unsigned char a[4] = {1, 2};
constexpr unsigned int i = bit_cast<unsigned int>(a);
static_assert(i == (LITTLE_END ? 0x00000201 : 0x01020000));
}
struct vol_mem {
volatile int x;
};
// both-error@+2 {{constexpr variable 'run_vol_mem' must be initialized by a constant expression}}
// both-note@+1 {{non-literal type 'vol_mem' cannot be used in a constant expression}}
constexpr int run_vol_mem = __builtin_bit_cast(int, vol_mem{43});
struct mem_ptr {
int vol_mem::*x; // both-note{{invalid type 'int vol_mem::*' is a member of 'mem_ptr'}}
};
// both-error@+2 {{constexpr variable 'run_mem_ptr' must be initialized by a constant expression}}
// both-note@+1 {{bit_cast from a member pointer type is not allowed in a constant expression}}
constexpr _BitInt(sizeof(mem_ptr) * 8) run_mem_ptr = __builtin_bit_cast(_BitInt(sizeof(mem_ptr) * 8), mem_ptr{nullptr});
constexpr int global_int = 0;
struct ref_mem {
const int &rm;
};
// both-error@+2 {{constexpr variable 'run_ref_mem' must be initialized by a constant expression}}
// both-note@+1 {{bit_cast from a type with a reference member is not allowed in a constant expression}}
constexpr intptr_t run_ref_mem = __builtin_bit_cast(intptr_t, ref_mem{global_int});