[mlir][LLVM] Model side effects of volatile and atomic load-store (#65730)

According to the LLVM language reference, both volatile memory
operations and atomic operations (except unordered) do not simply read
memory but also perform write operations on arbitrary memory[0][1].

In the case of volatile memory operations, this is the case due to the
read possibly having target specific properties. A common real-world
situation where this happens is reading memory mapped registers on an
MCU for example. Atomic operations are more special. They form a kind of
memory barrier which from the perspective of the optimizer/lang-ref
makes writes from other threads visible in the current thread. Any kind
of synchronization can therefore conservatively be modeled as a
write-effect.

This PR therefore adjusts the side effects of `llvm.load` and
`llvm.store` to add unknown global read and write effects if they are
either atomic or volatile.

Regarding testing: I am not sure how to best test this change for
`llvm.store` and the "globalness" of the effect that isn't just a unit
test checking that the output matches exactly. For the time being, I
added a test making sure that `llvm.load` does not get DCEd in
aforementioned cases.

Related logic in LLVM proper:

3398744a61/llvm/lib/IR/Instruction.cpp (L638-L676)


3398744a61/llvm/include/llvm/IR/Instructions.h (L258-L262)

[0] https://llvm.org/docs/LangRef.html#volatile-memory-accesses
[1] https://llvm.org/docs/Atomics.html#monotonic
This commit is contained in:
Markus Böck
2023-09-08 13:50:49 +02:00
committed by GitHub
parent da1eb886c4
commit feb7beaf70
3 changed files with 55 additions and 4 deletions

View File

@@ -326,9 +326,10 @@ def LLVM_GEPOp : LLVM_Op<"getelementptr", [Pure,
}
def LLVM_LoadOp : LLVM_MemAccessOpBase<"load",
[DeclareOpInterfaceMethods<PromotableMemOpInterface>,
[DeclareOpInterfaceMethods<MemoryEffectsOpInterface>,
DeclareOpInterfaceMethods<PromotableMemOpInterface>,
DeclareOpInterfaceMethods<SafeMemorySlotAccessOpInterface>]> {
dag args = (ins Arg<LLVM_PointerTo<LLVM_LoadableType>, "", [MemRead]>:$addr,
dag args = (ins LLVM_PointerTo<LLVM_LoadableType>:$addr,
OptionalAttr<I64Attr>:$alignment,
UnitAttr:$volatile_,
UnitAttr:$nontemporal,
@@ -399,10 +400,11 @@ def LLVM_LoadOp : LLVM_MemAccessOpBase<"load",
}
def LLVM_StoreOp : LLVM_MemAccessOpBase<"store",
[DeclareOpInterfaceMethods<PromotableMemOpInterface>,
[DeclareOpInterfaceMethods<MemoryEffectsOpInterface>,
DeclareOpInterfaceMethods<PromotableMemOpInterface>,
DeclareOpInterfaceMethods<SafeMemorySlotAccessOpInterface>]> {
dag args = (ins LLVM_LoadableType:$value,
Arg<LLVM_PointerTo<LLVM_LoadableType>,"",[MemWrite]>:$addr,
LLVM_PointerTo<LLVM_LoadableType>:$addr,
OptionalAttr<I64Attr>:$alignment,
UnitAttr:$volatile_,
UnitAttr:$nontemporal,

View File

@@ -812,6 +812,22 @@ Type GEPOp::getResultPtrElementType() {
// LoadOp
//===----------------------------------------------------------------------===//
void LoadOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
effects.emplace_back(MemoryEffects::Read::get(), getAddr());
// Volatile operations can have target-specific read-write effects on
// memory besides the one referred to by the pointer operand.
// Similarly, atomic operations that are monotonic or stricter cause
// synchronization that from a language point-of-view, are arbitrary
// read-writes into memory.
if (getVolatile_() || (getOrdering() != AtomicOrdering::not_atomic &&
getOrdering() != AtomicOrdering::unordered)) {
effects.emplace_back(MemoryEffects::Write::get());
effects.emplace_back(MemoryEffects::Read::get());
}
}
/// Returns true if the given type is supported by atomic operations. All
/// integer and float types with limited bit width are supported. Additionally,
/// depending on the operation pointers may be supported as well.
@@ -932,6 +948,22 @@ static void printLoadType(OpAsmPrinter &printer, Operation *op, Type type,
// StoreOp
//===----------------------------------------------------------------------===//
void StoreOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
effects.emplace_back(MemoryEffects::Write::get(), getAddr());
// Volatile operations can have target-specific read-write effects on
// memory besides the one referred to by the pointer operand.
// Similarly, atomic operations that are monotonic or stricter cause
// synchronization that from a language point-of-view, are arbitrary
// read-writes into memory.
if (getVolatile_() || (getOrdering() != AtomicOrdering::not_atomic &&
getOrdering() != AtomicOrdering::unordered)) {
effects.emplace_back(MemoryEffects::Write::get());
effects.emplace_back(MemoryEffects::Read::get());
}
}
LogicalResult StoreOp::verify() {
Type valueType = getValue().getType();
return verifyAtomicMemOp(*this, valueType,

View File

@@ -191,3 +191,20 @@ llvm.func @alloca_dce() {
%0 = llvm.alloca %c1_i64 x i32 : (i64) -> !llvm.ptr
llvm.return
}
// -----
// CHECK-LABEL: func @volatile_load
llvm.func @volatile_load(%x : !llvm.ptr) {
// A volatile load may have side-effects such as a write operation to arbitrary memory.
// Make sure it is not removed.
// CHECK: llvm.load volatile
%0 = llvm.load volatile %x : !llvm.ptr -> i8
// Same with monotonic atomics and any stricter modes.
// CHECK: llvm.load %{{.*}} atomic monotonic
%2 = llvm.load %x atomic monotonic { alignment = 1 } : !llvm.ptr -> i8
// But not unordered!
// CHECK-NOT: llvm.load %{{.*}} atomic unordered
%3 = llvm.load %x atomic unordered { alignment = 1 } : !llvm.ptr -> i8
llvm.return
}