Emit DWARF 5 call-site symbols even though DWARF 4 is set,
only in the case of LLDB tuning.
This patch addresses PR46643.
Differential Revision: https://reviews.llvm.org/D83463
PassManager.h is one of the top headers in the ClangBuildAnalyzer frontend worst offenders list.
This exposes a large number of implicit dependencies on various forward declarations/includes in other headers that need addressing.
SONY debugger does not prefer debug entry values feature, so
the plan is to avoid production of the entry values
by default when the tuning is SCE debugger.
The feature still can be enabled with the -debug-entry-values
option for the testing/development purposes.
This patch addresses PR46643.
Differential Revision: https://reviews.llvm.org/D83462
Test case `test/CodeGen/WebAssembly/stackified-debug.ll`
was failing due to malformed DwarfExpression.
This failure has been seen in lot of bots, for instance in:
http://lab.llvm.org:8011/builders/lld-x86_64-ubuntu-fast/builds/18794
: 'RUN: at line 1'
/home/buildbot/as-builder-4/lld-x86_64-ubuntu-fast/build/bin/llc
/home/buildbot/as-builder-4/lld-x86_64-ubuntu-fast/build/bin/FileCheck /home/buildbot/as-builder-4/lld-x86_64-ubuntu-fast/llvm-project/llvm/test/CodeGen/WebAssembly/stackified-debug.ll
home/buildbot/as-builder-4/lld-x86_64-ubuntu-fast/llvm-project/llvm/test/CodeGen/WebAssembly/stackified-debug.ll:26:10: error: CHECK: expected string not found in input
CHECK: .int16 4 # Loc expr size
^
<stdin>:34:2: note: scanning from here
.int16 3 # Loc expr size
Differential Revision: https://reviews.llvm.org/D83560
This patch was reverted in 9d2da6759b due to assertion failure seen
in `test/DebugInfo/Sparc/subreg.ll`. Assertion failure was happening
due to malformed/unhandeled DwarfExpression.
Differential Revision: https://reviews.llvm.org/D83560
Summary:
llvm is missing support for DW_OP_implicit_value operation.
DW_OP_implicit_value op is indispensable for cases such as
optimized out long double variables.
For intro refer: DWARFv5 Spec Pg: 40 2.6.1.1.4 Implicit Location Descriptions
Consider the following example:
```
int main() {
long double ld = 3.14;
printf("dummy\n");
ld *= ld;
return 0;
}
```
when compiled with tunk `clang` as
`clang test.c -g -O1` produces following location description
of variable `ld`:
```
DW_AT_location (0x00000000:
[0x0000000000201691, 0x000000000020169b): DW_OP_constu 0xc8f5c28f5c28f800, DW_OP_stack_value, DW_OP_piece 0x8, DW_OP_constu 0x4000, DW_OP_stack_value, DW_OP_bit_piece 0x10 0x40, DW_OP_stack_value)
DW_AT_name ("ld")
```
Here one may notice that this representation is incorrect(DWARF4
stack could only hold integers(and only up to the size of address)).
Here the variable size itself is `128` bit.
GDB and LLDB confirms this:
```
(gdb) p ld
$1 = <invalid float value>
(lldb) frame variable ld
(long double) ld = <extracting data from value failed>
```
GCC represents/uses DW_OP_implicit_value in these sort of situations.
Based on the discussion with Jakub Jelinek regarding GCC's motivation
for using this, I concluded that DW_OP_implicit_value is most appropriate
in this case.
Link: https://gcc.gnu.org/pipermail/gcc/2020-July/233057.html
GDB seems happy after this patch:(LLDB doesn't have support
for DW_OP_implicit_value)
```
(gdb) p ld
p ld
$1 = 3.14000000000000012434
```
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D83560
This is an alternative proposal to D81476 (and D82084) - the details were sufficiently confusing to me it seemed easier to write some code and see how it looks.
Reviewers: SouraVX
Differential Revision: https://reviews.llvm.org/D84278
Summary:
AIX assembly's .set directive is not usable for aliasing purpose.
We need to use extra-label-at-defintion strategy to generate symbol
aliasing on AIX.
Reviewed By: DiggerLin, Xiangling_L
Differential Revision: https://reviews.llvm.org/D83252
Summary:
This patch reduces file size in debug builds by dropping variable locations a
debugger user will not see.
After building the debug entity history map we loop through it. For each
variable we look at each entry. If the entry opens a location range which does
not intersect any of the variable's scope's ranges then we mark it for removal.
After visiting the entries for each variable we also mark any clobbering
entries which will no longer be referenced for removal, and then finally erase
the marked entries. This all requires the ability to query the order of
instructions, so before this runs we number them.
Tests:
Added llvm/test/DebugInfo/X86/trim-var-locs.mir
Modified llvm/test/DebugInfo/COFF/register-variables.ll
Branch folding merges the tails of if.then and if.else into if.else. Each
blocks' debug-locations point to different scopes so when they're merged we
can't use either. Because of this the variable 'c' ends up with a location
range which doesn't cover any instructions in its scope; with the patch
applied the location range is dropped and its flag changes to IsOptimizedOut.
Modified llvm/test/DebugInfo/X86/live-debug-variables.ll
Modified llvm/test/DebugInfo/ARM/PR26163.ll
In both tests an out of scope location is now removed. The remaining location
covers the entire scope of the variable allowing us to emit it as a single
location.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D82129
Summary:
This support is needed for the Fortran array variables with pointer/allocatable
attribute. This support enables debugger to identify the status of variable
whether that is currently allocated/associated.
for pointer array (before allocation/association)
without DW_AT_associated
(gdb) pt ptr
type = integer (140737345375288:140737354129776)
(gdb) p ptr
value requires 35017956 bytes, which is more than max-value-size
with DW_AT_associated
(gdb) pt ptr
type = integer (:)
(gdb) p ptr
$1 = <not associated>
for allocatable array (before allocation)
without DW_AT_allocated
(gdb) pt arr
type = integer (140737345375288:140737354129776)
(gdb) p arr
value requires 35017956 bytes, which is more than max-value-size
with DW_AT_allocated
(gdb) pt arr
type = integer, allocatable (:)
(gdb) p arr
$1 = <not allocated>
Testing
- unit test cases added
- check-llvm
- check-debuginfo
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D83544
For now, DIEExpr is used only in two places:
1) in the debug info library unit test suite to emit
a DW_AT_str_offsets_base attribute with the DW_FORM_sec_offset
form, see dwarfgen::DIE::addStrOffsetsBaseAttribute();
2) in DwarfCompileUnit::addLocationAttribute() to generate the location
attribute for a TLS variable.
The later case used an incorrect DWARF form of DW_FORM_udata, which
implies storing an uleb128 value, not a 4/8 byte constant. The generated
result was as expected because DIEExpr::SizeOf() did not handle the used
form, but returned the size of the code pointer by default.
The patch fixes the issue by using more appropriate DWARF forms for
the problematic case and making DIEExpr::SizeOf() more straightforward.
Differential Revision: https://reviews.llvm.org/D83958
This patch handles CFI with basic block sections, which unlike DebugInfo does
not support ranges. The DWARF standard explicitly requires emitting separate
CFI Frame Descriptor Entries for each contiguous fragment of a function. Thus,
the CFI information for all callee-saved registers (possibly including the
frame pointer, if necessary) have to be emitted along with redefining the
Call Frame Address (CFA), viz. where the current frame starts.
CFI directives are emitted in FDE’s in the object file with a low_pc, high_pc
specification. So, a single FDE must point to a contiguous code region unlike
debug info which has the support for ranges. This is what complicates CFI for
basic block sections.
Now, what happens when we start placing individual basic blocks in unique
sections:
* Basic block sections allow the linker to randomly reorder basic blocks in the
address space such that a given basic block can become non-contiguous with the
original function.
* The different basic block sections can no longer share the cfi_startproc and
cfi_endproc directives. So, each basic block section should emit this
independently.
* Each (cfi_startproc, cfi_endproc) directive will result in a new FDE that
caters to that basic block section.
* Now, this basic block section needs to duplicate the information from the
entry block to compute the CFA as it is an independent entity. It cannot refer
to the FDE of the original function and hence must duplicate all the stuff that
is needed to compute the CFA on its own.
* We are working on a de-duplication patch that can share common information in
FDEs in a CIE (Common Information Entry) and we will present this as a follow up
patch. This can significantly reduce the duplication overhead and is
particularly useful when several basic block sections are created.
* The CFI directives are emitted similarly for registers that are pushed onto
the stack, like callee saved registers in the prologue. There are cfi
directives that emit how to retrieve the value of the register at that point
when the push happened. This has to be duplicated too in a basic block that is
floated as a separate section.
Differential Revision: https://reviews.llvm.org/D79978
This fixes warnings raised by Clang's new -Wsuggest-override, in preparation for enabling that warning in the LLVM build. This patch also removes the virtual keyword where redundant, but only in places where doing so improves consistency within a given file. It also removes a couple unnecessary virtual destructor declarations in derived classes where the destructor inherited from the base class is already virtual.
Differential Revision: https://reviews.llvm.org/D83709
Caused by uninitialized load of llvm::DwarfDebug::PrevCU:
llvm::DwarfCompileUnit::addRange () at ../lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp:276
llvm::DwarfDebug::endFunctionImpl () at ../lib/CodeGen/AsmPrinter/DwarfDebug.cpp:1586
llvm::DebugHandlerBase::endFunction () at ../lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp:319
llvm::AsmPrinter::EmitFunctionBody () at ../lib/CodeGen/AsmPrinter/AsmPrinter.cpp:1230
llvm::ARMAsmPrinter::runOnMachineFunction () at ../lib/Target/ARM/ARMAsmPrinter.cpp:161
Most of the DebugInfo tests under `LLVM_LIT_ARGS:STRING=-sv --vg` prior to this fix, and pass with the fix applied.
Reviewed By: aprantl, dblaikie
Differential Revision: https://reviews.llvm.org/D81631
This patch adds some missing information to the LF_BUILDINFO which allows for rebuilding an .OBJ without any external dependency but the .OBJ itself (other than the compiler executable).
Some tools need this information to reproduce a build without any knowledge of the build system. The LF_BUILDINFO therefore stores a full path to the compiler, the PWD (which is the CWD at program startup), a relative or absolute path to the TU, and the full CC1 command line. The command line needs to be freestanding (not depend on any environment variable). In the same way, MSVC doesn't store the provided command-line, but an expanded version (somehow their equivalent of CC1) which is also freestanding.
For more information see PR36198 and D43002.
Differential Revision: https://reviews.llvm.org/D80833
Since the `RISCVExpandPseudo` pass has been split from
`RISCVExpandAtomicPseudo` pass, it would be nice to run the former as
early as possible (The latter has to be run as late as possible to
ensure correctness). Running earlier means we can reschedule these pairs
as we see fit.
Running earlier in the machine pass pipeline is good, but would mean
teaching many more passes about `hasLabelMustBeEmitted`. Splitting the
basic blocks also pessimises possible optimisations because some
optimisations are MBB-local, and others are disabled if the block has
its address taken (which is notionally what `hasLabelMustBeEmitted`
means).
This patch uses a new approach of setting the pre-instruction symbol on
the AUIPC instruction to a temporary symbol and referencing that. This
avoids splitting the basic block, but allows us to reference exactly the
instruction that we need to. Notionally, this approach seems more
correct because we do actually want to address a specific instruction.
This then allows the pass to be moved much earlier in the pass pipeline,
before both scheduling and register allocation. However, to do so we
must leave the MIR in SSA form (by not redefining registers), and so use
a virtual register for the intermediate value. By using this virtual
register, this pass now has to come before register allocation.
Reviewed By: luismarques, asb
Differential Revision: https://reviews.llvm.org/D82988
Occasionally we see absolutely massive basic blocks, typically in global
constructors that are vulnerable to heavy inlining. When these blocks are
dense with DBG_VALUE instructions, we can hit near quadratic complexity in
DwarfDebug's validThroughout function. The problem is caused by:
* validThroughout having to step through all instructions in the block to
examine their lexical scope,
* and a high proportion of instructions in that block being DBG_VALUEs
for a unique variable fragment,
Leading to us stepping through every instruction in the block, for (nearly)
each instruction in the block.
By adding this guard, we force variables in large blocks to use a location
list rather than a single-location expression, as shown in the added test.
This shouldn't change the meaning of the output DWARF at all: instead we
use a less efficient DWARF encoding to avoid a poor-performance code path.
Differential Revision: https://reviews.llvm.org/D83236
Summary:
When a desired symbol name contains invalid character that the
system assembler could not process, we need to emit .rename
directive in assembly path in order for that desired symbol name
to appear in the symbol table.
Reviewed By: hubert.reinterpretcast, DiggerLin, daltenty, Xiangling_L
Differential Revision: https://reviews.llvm.org/D82481
This patch uses ranges for debug information when a function contains basic block sections rather than using [lowpc, highpc]. This is also the first in a series of patches for debug info and does not contain the support for linker relaxation. That will be done as a follow up patch.
Differential Revision: https://reviews.llvm.org/D78851
Summary:
This is a fix for PR45009.
When working on D67492 I made DwarfExpression emit a single
DW_OP_entry_value operation covering the whole composite location
description that is produced if a register does not have a valid DWARF
number, and is instead composed of multiple register pieces. Looking
closer at the standard, this appears to not be valid DWARF. A
DW_OP_entry_value operation's block can only be a DWARF expression or a
register location description, so it appears to not be valid for it to
hold a composite location description like that.
See DWARFv5 sec. 2.5.1.7:
"The DW_OP_entry_value operation pushes the value that the described
location held upon entering the current subprogram. It has two
operands: an unsigned LEB128 length, followed by a block containing a
DWARF expression or a register location description (see Section
2.6.1.1.3 on page 39)."
Here is a dwarf-discuss mail thread regarding this:
http://lists.dwarfstd.org/pipermail/dwarf-discuss-dwarfstd.org/2020-March/004610.html
There was not a strong consensus reached there, but people seem to lean
towards that operations specified under 2.6 (e.g. DW_OP_piece) may not
be part of a DWARF expression, and thus the DW_OP_entry_value operation
can't contain those.
Perhaps we instead want to emit a entry value operation per each
DW_OP_reg* operation, e.g.:
- DW_OP_entry_value(DW_OP_regx sub_reg0),
DW_OP_stack_value,
DW_OP_piece 8,
- DW_OP_entry_value(DW_OP_regx sub_reg1),
DW_OP_stack_value,
DW_OP_piece 8,
[...]
The question then becomes how the call site should look; should a
composite location description be emitted there, and we then leave it up
to the debugger to match those two composite location descriptions?
Another alternative could be to emit a call site parameter entry for
each sub-register, but firstly I'm unsure if that is even valid DWARF,
and secondly it seems like that would complicate the collection of call
site values quite a bit. As far as I can tell GCC does not emit any
entry values / call sites in these cases, so we do not have something to
compare with, but the former seems like the more reasonable approach.
Currently when trying to emit a call site entry for a parameter composed
of multiple DWARF registers a (DwarfRegs.size() == 1) assert is
triggered in addMachineRegExpression(). Until the call site
representation is figured out, and until there is use for these entry
values in practice, this commit simply stops the invalid DWARF from
being emitted.
Reviewers: djtodoro, vsk, aprantl
Reviewed By: djtodoro, vsk
Subscribers: jyknight, hiraditya, fedor.sergeev, jrtc27, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D75270
This function is deceptive at best: it doesn't return what you'd expect.
If you have an arbitrary GlobalValue and you want to determine the
alignment of that pointer, Value::getPointerAlignment() returns the
correct value. If you want the actual declared alignment of a function
or variable, GlobalObject::getAlignment() returns that.
This patch switches all the users of GlobalValue::getAlignment to an
appropriate alternative.
Differential Revision: https://reviews.llvm.org/D80368
Following on from this RFC[0] from a while back, this is the first patch towards
implementing variadic debug values.
This patch specifically adds a set of functions to MachineInstr for performing
operations specific to debug values, and replacing uses of the more general
functions where appropriate. The most prevalent of these is replacing
getOperand(0) with getDebugOperand(0) for debug-value-specific code, as the
operands corresponding to values will no longer be at index 0, but index 2 and
upwards: getDebugOperand(x) == getOperand(x+2). Similar replacements have been
added for the other operands, along with some helper functions to replace
oft-repeated code and operate on a variable number of value operands.
[0] http://lists.llvm.org/pipermail/llvm-dev/2020-February/139376.html<Paste>
Differential Revision: https://reviews.llvm.org/D81852
This patch adds some missing information to the LF_BUILDINFO which allows for rebuilding an .OBJ without any external dependency but the .OBJ itself (other than the compiler executable).
Some tools need this information to reproduce a build without any knowledge of the build system. The LF_BUILDINFO therefore stores a full path to the compiler, the PWD (which is the CWD at program startup), a relative or absolute path to the TU, and the full CC1 command line. The command line needs to be freestanding (not depend on any environment variable). In the same way, MSVC doesn't store the provided command-line, but an expanded version (somehow their equivalent of CC1) which is also freestanding.
For more information see PR36198 and D43002.
Differential Revision: https://reviews.llvm.org/D80833
Summary:
Add a flag to omit the xray_fn_idx to cut size overhead and relocations
roughly in half at the cost of reduced performance for single function
patching. Minor additions to compiler-rt support per-function patching
without the index.
Reviewers: dberris, MaskRay, johnislarry
Subscribers: hiraditya, arphaman, cfe-commits, #sanitizers, llvm-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D81995
SUMMARY:
Since we deal with aix emitLinkage in the PPCAIXAsmPrinter::emitLinkage() in the patch https://reviews.llvm.org/D75866. It do not go to AsmPrinter::emitLinkage() any more, we clean up some aix related code in the AsmPrinter::emitLinkage()
Reviewers: Jason liu
Differential Revision: https://reviews.llvm.org/D81613
SUMMARY:
in the aix assembly , it do not have .hidden and .protected directive.
in current llvm. if a function or a variable which has visibility attribute, it will generate something like the .hidden or .protected , it can not recognize by aix as.
in aix assembly, the visibility attribute are support in the pseudo-op like
.extern Name [ , Visibility ]
.globl Name [, Visibility ]
.weak Name [, Visibility ]
in this patch, we implement the visibility attribute for the global variable, function or extern function .
for example.
extern __attribute__ ((visibility ("hidden"))) int
bar(int* ip);
__attribute__ ((visibility ("hidden"))) int b = 0;
__attribute__ ((visibility ("hidden"))) int
foo(int* ip){
return (*ip)++;
}
the visibility of .comm linkage do not support , we will have a separate patch for it.
we have the unsupported cases ("default" and "internal") , we will implement them in a a separate patch for it.
Reviewers: Jason Liu ,hubert.reinterpretcast,James Henderson
Differential Revision: https://reviews.llvm.org/D75866
Commit d77ae1552f ("[DebugInfo] Support to emit debugInfo
for extern variables") added support to emit debuginfo
for extern variables. Currently, only BPF target enables to
emit debuginfo for extern variables.
But if the extern variable has "void" type, the compilation will
fail.
-bash-4.4$ cat t.c
extern void bla;
void *test() {
void *x = &bla;
return x;
}
-bash-4.4$ clang -target bpf -g -O2 -S t.c
missing global variable type
!1 = distinct !DIGlobalVariable(name: "bla", scope: !2, file: !3, line: 1,
isLocal: false, isDefinition: false)
...
fatal error: error in backend: Broken module found, compilation aborted!
PLEASE submit a bug report to https://bugs.llvm.org/ and include the crash backtrace,
preprocessed source, and associated run script.
Stack dump:
...
The IR requires a DIGlobalVariable must have a valid type and the
"void" type does not generate any type, hence the above fatal error.
Note that if the extern variable is defined as "const void", the
compilation will succeed.
-bash-4.4$ cat t.c
extern const void bla;
const void *test() {
const void *x = &bla;
return x;
}
-bash-4.4$ clang -target bpf -g -O2 -S t.c
-bash-4.4$ cat t.ll
...
!1 = distinct !DIGlobalVariable(name: "bla", scope: !2, file: !3, line: 1,
type: !6, isLocal: false, isDefinition: false)
!6 = !DIDerivedType(tag: DW_TAG_const_type, baseType: null)
...
Since currently, "const void extern_var" is supported by the
debug info, it is natural that "void extern_var" should also
be supported. This patch disabled assertion of "void extern_var"
in IR verifier and add proper guarding when emiting potential
null debug info type to dwarf types.
Differential Revision: https://reviews.llvm.org/D81131
This adds call site info support for call instructions with delay slot.
Search for instructions inside call delay slot, which load value
into parameter forwarding registers.
Return address of the call points to instruction after call delay slot,
which is not the one, immediately after the call instruction.
Patch by Nikola Tesic
Differential revision: https://reviews.llvm.org/D78107
The collectCallSiteParameters() method searches for instructions
which load values into registers used for parameters passing.
Previously, interpretation of those values, loaded by one such
instruction, was implemented inside collectCallSiteParameters() method.
This patch moves the interpretation code from collectCallSiteParameters()
method into a separate static method named interpretValue. New method is
called from collectCallSiteParameters() to process each instruction from
targeted instruction scope.
The collectCallSiteParameters() searches for loaded parameter value
among instructions which precede the call instruction, inside the same
basic block. When needed, new method (interpretValue) could be used for
searching any instruction scope.
This is preparation for search of parameter value, loaded inside call
delay slot.
Patch by Nikola Tesic
Differential revision: https://reviews.llvm.org/D78106
These cases all follow the same pattern:
struct A {
friend class X;
//...
class X {};
};
But 'friend class X;' injects 'X' into the surrounding namespace scope,
rather than introducing a class member. So the second 'class X {}' is a
completely different type, which changes the meaning of the earlier name
'X' from '::X' to 'A::X'.
Additionally, the friend declaration is pointless -- members of a class
don't need to be befriended to be able to access private members.
This patch adds support for emission of following DWARFv5 macro
forms in .debug_macro.dwo section:
- DW_MACRO_start_file
- DW_MACRO_end_file
- DW_MACRO_define_strx
- DW_MACRO_undef_strx
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D78866
DW_MACRO_define_strx forms are supported now in llvm-dwarfdump and these
forms can be used in both debug_macro[.dwo] sections. An added advantage
for using strx forms over strp forms is that it uses indices
approach instead of a relocation to debug_str section.
This patch unify the emission for debug_macro section.
Reviewed by: dblaikie, ikudrin
Differential Revision: https://reviews.llvm.org/D78865