I went over the output of the following mess of a command:
`(ulimit -m 2000000; ulimit -v 2000000; git ls-files -z | parallel --xargs -0 cat | aspell list --mode=none --ignore-case | grep -E '^[A-Za-z][a-z]*$' | sort | uniq -c | sort -n | grep -vE '.{25}' | aspell pipe -W3 | grep : | cut -d' ' -f2 | less)`
and proceeded to spend a few days looking at it to find probable typos
and fixed a few hundred of them in all of the llvm project (note, the
ones I found are not anywhere near all of them, but it seems like a
good start).
Reviewed By: Amir, maksfb
Differential Revision: https://reviews.llvm.org/D130824
This changes `FunctionFragment` from being used as a temporary proxy
object to access basic block ranges to a heap-allocated object that can
store fragment-specific information.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132050
A const-qualified reference to function layout allows accessing
non-const qualified basic blocks on a const-qualified function. This
patch adds or removes const-qualifiers where necessary to indicate where
basic blocks are used in a non-const manner.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132049
This changes `FunctionFragment` from being used as a temporary proxy
object to access basic block ranges to a heap-allocated object that can
store fragment-specific information.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132050
A const-qualified reference to function layout allows accessing
non-const qualified basic blocks on a const-qualified function. This
patch adds or removes const-qualifiers where necessary to indicate where
basic blocks are used in a non-const manner.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132049
This adds basic fragment awareness in the exception handling passes and
generates the necessary symbols for fragments.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D130520
To track whether a function's new layout is different from its old
layout when updating it, the old layout would be kept around in memory
indefinitely (if the new layout is different). This was used only for
debugging/logging purposes. This patch forces the caller of function
layout's update method to copy the old layout into a temporary if they
need it by removing the old layout fields.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D131413
This patch adds a dedicated class to keep track of each function's
layout. It also lays the groundwork for splitting functions into
multiple fragments (as opposed to a strict hot/cold split).
Reviewed By: maksfb
Differential Revision: https://reviews.llvm.org/D129518
As we are moving towards support for multiple fragments, loops that
iterate over all basic blocks of a function, but do not depend on the
order of basic blocks in the final layout, should iterate over binary
functions directly, rather than the layout.
Eventually, all loops using the layout list should either iterate over
the function, or be aware of multiple layouts. This patch replaces
references to binary function's block layout with the binary function
itself where only little code changes are necessary.
Reviewed By: maksfb
Differential Revision: https://reviews.llvm.org/D129585
The gold linker veneers are written between functions without symbols,
so we to handle it specially in BOLT.
Vladislav Khmelevsky,
Advanced Software Technology Lab, Huawei
Differential Revision: https://reviews.llvm.org/D129260
This reverts commit 425dda76e9.
This commit is currently causing BOLT to crash in one of our
binaries and needs a bit more checking to make sure it is safe
to land.
The gold linker veneers are written between functions without symbols,
so we to handle it specially in BOLT.
Vladislav Khmelevsky,
Advanced Software Technology Lab, Huawei
Differential Revision: https://reviews.llvm.org/D128082
Some of the passes that calculates tentative layout like LongJmp and
Golang are expecting that only functions with valid index will be
located in hot text section. But currently functions with valid profiles
and not set index are breaking this logic, to fix this we can move the
hasValidProfile() condition from AssignSections pass to ReorderFunctions.
Vladislav Khmelevsky,
Advanced Software Technology Lab, Huawei
Differential Revision: https://reviews.llvm.org/D127223
Emit warning when using deprecated option '-reorder-blocks=cache+'.
Auto switch to option '-reorder-blocks=ext-tsp'.
Test Plan:
```
ninja check-bolt
```
Added a new test cache+-deprecated.test.
Run and verify that the upstream tests are passed.
Reviewed By: rafauler, Amir, maksfb
Differential Revision: https://reviews.llvm.org/D126722
Since LLVM MC now preserves redundant AdSize override prefix (0x67), remove it
in BOLT explicitly (-x86-strip-redundant-adsize, on by default).
Test Plan:
`bin/llvm-lit -a bolt/test/X86/addr32.s`
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D120975
Summary:
Move the annotation to avoid dynamic memory allocations.
Improves the CPU time of instrumenting a large binary by 1% (+-0.8%, p-value 0.01)
Test Plan: NFC
Reviewers: maksfb
FBD30091656
Summary:
Refactor bolt/*/Passes to follow the braces rule for if/else/loop from
[LLVM Coding Standards](https://llvm.org/docs/CodingStandards.html).
(cherry picked from FBD33344642)
Summary:
The patch moves the shortenInstructions and nop remove to separate binary
passes. As a result when llvm-bolt optimizations stage will begin the
instructions of the binary functions will be absolutely the same as it
was in the binary. This is needed for the golang support by llvm-bolt.
Some of the tests must be changed, since bb alignment nops might create
unreachable BBs in original functions.
Vladislav Khmelevsky,
Advanced Software Technology Lab, Huawei
(cherry picked from FBD32896517)
Summary:
Refactor members of BinaryBasicBlock. Replace some std containers with
ADT equivalents. The size of BinaryBasicBlock on x86-64 Linux is reduced
from 232 bytes to 192 bytes.
(cherry picked from FBD33081850)
Summary:
Some optimizations may remove all instructions in a basic block.
The pass will cleanup the CFG afterwards by removing empty basic
blocks and merging duplicate CFG edges.
The normalized CFG is printed under '-print-normalized' option.
(cherry picked from FBD32774360)
Summary:
BinaryContext is available via BinaryFunction::getBinaryContext(),
hence there's no reason to pass both as arguments to a function.
In a similar fashion, BinaryBasicBlock has an access to BinaryFunction
via getFunction(). Eliminate unneeded arguments.
(cherry picked from FBD31921680)
Summary:
Moves source files into separate components, and make explicit
component dependency on each other, so LLVM build system knows how to
build BOLT in BUILD_SHARED_LIBS=ON.
Please use the -c merge.renamelimit=230 git option when rebasing your
work on top of this change.
To achieve this, we create a new library to hold core IR files (most
classes beginning with Binary in their names), a new library to hold
Utils, some command line options shared across both RewriteInstance
and core IR files, a new library called Rewrite to hold most classes
concerned with running top-level functions coordinating the binary
rewriting process, and a new library called Profile to hold classes
dealing with profile reading and writing.
To remove the dependency from BinaryContext into X86-specific classes,
we do some refactoring on the BinaryContext constructor to receive a
reference to the specific backend directly from RewriteInstance. Then,
the dependency on X86 or AArch64-specific classes is transfered to the
Rewrite library. We can't have the Core library depend on targets
because targets depend on Core (which would create a cycle).
Files implementing the entry point of a tool are transferred to the
tools/ folder. All header files are transferred to the include/
folder. The src/ folder was renamed to lib/.
(cherry picked from FBD32746834)