Structured bindings were not properly marked odr-used
and therefore captured in generic lambddas.
Fixes#57826
It is unclear to me if further simplification can be gained
through the allowance described in
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0588r1.html.
Either way, I think this makes support for P0588 completes,
but we probably want to add test for that in a separate PR.
(and I lack confidence I understand P0588 sufficiently to assert
the completeness of our cnformance).
Reviewed By: aaron.ballman, #clang-language-wg
Differential Revision: https://reviews.llvm.org/D137244
Implement https://cplusplus.github.io/CWG/issues/2631.html.
Immediate calls in default arguments and defaults members
are not evaluated.
Instead, we evaluate them when constructing a
`CXXDefaultArgExpr`/`BuildCXXDefaultInitExpr`.
The immediate calls are executed by doing a
transform on the initializing expression.
Note that lambdas are not considering subexpressions so
we do not need to transform them.
As a result of this patch, unused default member
initializers are not considered odr-used, and
errors about members binding to local variables
in an outer scope only surface at the point
where a constructor is defined.
Reviewed By: aaron.ballman, #clang-language-wg, rupprecht
Differential Revision: https://reviews.llvm.org/D136554
As noted in https://github.com/llvm/llvm-project/issues/59624, we sometimes mark implicitly
deleted special member functions as non-trivial. This is unnecessary work and leads to some
weird type traits errors.
This fixes the problem by making the implicitly deleted special member functions always
trivial.
Reviewed By: #clang-language-wg, erichkeane
Differential Revision: https://reviews.llvm.org/D140664
This reverts commit f1f1b60c7b.
Temporary revert, possibly triggers a new assertion failure on
QualType::getCommonPtr.
We're working on a reproducer, to follow-up on
https://reviews.llvm.org/D136554.
Implement https://cplusplus.github.io/CWG/issues/2631.html.
Immediate calls in default arguments and defaults members
are not evaluated.
Instead, we evaluate them when constructing a
`CXXDefaultArgExpr`/`BuildCXXDefaultInitExpr`.
The immediate calls are executed by doing a
transform on the initializing expression.
Note that lambdas are not considering subexpressions so
we do not need to transform them.
As a result of this patch, unused default member
initializers are not considered odr-used, and
errors about members binding to local variables
in an outer scope only surface at the point
where a constructor is defined.
Reviewed By: aaron.ballman, #clang-language-wg
Differential Revision: https://reviews.llvm.org/D136554
Implement https://cplusplus.github.io/CWG/issues/2631.html.
Immediate calls in default arguments and defaults members
are not evaluated.
Instead, we evaluate them when constructing a
`CXXDefaultArgExpr`/`BuildCXXDefaultInitExpr`.
The immediate calls are executed by doing a
transform on the initializing expression.
Note that lambdas are not considering subexpressions so
we do not need to transform them.
As a result of this patch, unused default member
initializers are not considered odr-used, and
errors about members binding to local variables
in an outer scope only surface at the point
where a constructor is defined.
Reviewed By: aaron.ballman, #clang-language-wg
Differential Revision: https://reviews.llvm.org/D136554
Implement https://cplusplus.github.io/CWG/issues/2631.html.
Immediate calls in default arguments and defaults members
are not evaluated.
Instead, we evaluate them when constructing a
`CXXDefaultArgExpr`/`BuildCXXDefaultInitExpr`.
The immediate calls are executed by doing a
transform on the initializing expression.
Note that lambdas are not considering subexpressions so
we do not need to transform them.
As a result of this patch, unused default member
initializers are not considered odr-used, and
errors about members binding to local variables
in an outer scope only surface at the point
where a constructor is defined.
Reviewed By: aaron.ballman, #clang-language-wg
Differential Revision: https://reviews.llvm.org/D136554
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Implement https://cplusplus.github.io/CWG/issues/2631.html.
Immediate calls in default arguments and defaults members
are not evaluated.
Instead, we evaluate them when constructing a
`CXXDefaultArgExpr`/`BuildCXXDefaultInitExpr`.
The immediate calls are executed by doing a
transform on the initializing expression.
Note that lambdas are not considering subexpressions so
we do not need to transform them.
As a result of this patch, unused default member
initializers are not considered odr-used, and
errors about members binding to local variables
in an outer scope only surface at the point
where a constructor is defined.
Reviewed By: aaron.ballman, #clang-language-wg
Differential Revision: https://reviews.llvm.org/D136554
After accepted in Kona, update the code to accept static operator[] as well.
No big code changes: accept this operator as static in SemaDeclCXX, update AST call generation in SemaOverload and update feature macros + tests accordingly.
Reviewed By: cor3ntin, erichkeane, #clang-language-wg
Differential Revision: https://reviews.llvm.org/D138387
CWG2635 prohibits adding a constraint to a structured as a defect
report. This patch implements that restriction.
Differential Revision: https://reviews.llvm.org/D138852
Adds support for NamespaceDecl to inform if its part of a nested namespace.
This flag only corresponds to the inner namespaces in a nested namespace declaration.
In this example:
namespace <X>::<Y>::<Z> {}
Only <Y> and <Z> will be classified as nested.
This flag isn't meant for assisting in building the AST, more for static analysis and refactorings.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D90568
This revision fixes typos where there are 2 consecutive words which are
duplicated. There should be no code changes in this revision (only
changes to comments and docs). Do let me know if there are any
undesirable changes in this revision. Thanks.
This change makes `this` a reference instead of a pointer in
HLSL. HLSL does not have the `->` operator, and accesses through `this`
are with the `.` syntax.
Tests were added and altered to make sure
the AST accurately reflects the types.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D135721
Implement https://cplusplus.github.io/CWG/issues/2631.html.
Immediate calls in default arguments and defaults members
are not evaluated.
Instead, we evaluate them when constructing a
`CXXDefaultArgExpr`/`BuildCXXDefaultInitExpr`.
The immediate calls are executed by doing a
transform on the initializing expression.
Note that lambdas are not considering subexpressions so
we do not need to transform them.
As a result of this patch, unused default member
initializers are not considered odr-used, and
errors about members binding to local variables
in an outer scope only surface at the point
where a constructor is defined.
Reviewed By: aaron.ballman, #clang-language-wg
Differential Revision: https://reviews.llvm.org/D136554
Implement https://cplusplus.github.io/CWG/issues/2631.html.
Immediate calls in default arguments and defaults members
are not evaluated.
Instead, we evaluate them when constructing a
`CXXDefaultArgExpr`/`BuildCXXDefaultInitExpr`.
The immediate calls are executed by doing a
transform on the initializing expression.
Note that lambdas are not considering subexpressions so
we do not need to transform them.
As a result of this patch, unused default member
initializers are not considered odr-used, and
errors about members binding to local variables
in an outer scope only surface at the point
where a constructor is defined.
Reviewed By: aaron.ballman, #clang-language-wg
Differential Revision: https://reviews.llvm.org/D136554
Based on discussion on the core reflector, it was made clear that a
concept that depends on itself should be a hard error, not a constraint
failure. This patch implements a stack of constraint-checks-in-progress
to make sure we quit, rather than hitting stack-exhaustion.
Note that we DO need to be careful to make sure we still check
constraints properly that are caused by a previous constraint, but not
derived from (such as when a check causes us to check special member
function generation), so we cannot use the existing logic to see if this
is being instantiated.
This fixes https://github.com/llvm/llvm-project/issues/44304 and
https://github.com/llvm/llvm-project/issues/50891.
Differential Revision: https://reviews.llvm.org/D136975
Removes a bunch of obsolete methods in favor of a single one returning
an ArrayRef of TemplateArgument.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D136602
Reported as it showed up as a constriants failure after the deferred
instantiation patch, we were checking constraints TWICE after overload
resolution. The first is during overload resolution, the second is when
diagnosing a use.
This patch modifies DiagnoseUseOfDecl to skip the trailing requires
clause check in some cases. First, of course, after choosing a candidate
after overload resolution.
The second is when evaluating a shadow using constructor, which had its
constraints checked when picking a constructor (as this is ALWAYS an
overload situation!).
Differential Revision: https://reviews.llvm.org/D135772
This introduces support for nullptr and nullptr_t in C2x mode. The
proposal accepted by WG14 is:
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3042.htm
Note, there are quite a few incompatibilities with the C++ feature in
some of the edge cases of this feature. Therefore, there are some FIXME
comments in tests for testing behavior that might change after WG14 has
resolved national body comments (a process we've not yet started). So
this implementation might change slightly depending on the resolution
of comments. This is called out explicitly in the release notes as
well.
Differential Revision: https://reviews.llvm.org/D135099
- store NestedNameSpecifier & Loc for the qualifiers
This information was entirely missing from the AST.
- expose the location information for qualifier/identifier/typedefs as typeloc
This allows many traversals/astmatchers etc to handle these generically along
with other references. The decl vs type split can help preserve typedef
sugar when https://github.com/llvm/llvm-project/issues/57659 is resolved.
- fix the SourceRange of UsingEnumDecl to include 'using'.
Fixes https://github.com/clangd/clangd/issues/1283
Differential Revision: https://reviews.llvm.org/D134303
LookupSpecialMember might fail, so changes the cast to cast_or_null.
Inside Sema, skip a particular base, similar to other cases, rather than
asserting on dtor showing up.
Other option would be to mark classes with invalid destructors as invalid, but
that seems like a lot more invasive and we do lose lots of diagnostics that
currently work on classes with broken members.
Differential Revision: https://reviews.llvm.org/D135254
As @mizvekov suggested in D134772. This works great for D128750 when
dealing with AutoType's.
Reviewed By: mizvekov, erichkeane
Differential Revision: https://reviews.llvm.org/D135088
Adds a fix to the diagnostic of replacing the `= default` to `= delete`
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D134549
Although using-enum's grammar is 'using elaborated-enum-specifier',
the lookup for the enum is ordinary lookup (and not the tagged-type
lookup that normally occurs wth an tagged-type specifier). Thus (a)
we can find typedefs and (b) do not find enum tags hidden by a non-tag
name (the struct stat thing).
This reimplements that part of using-enum handling, to address DR2621,
where clang's behaviour does not match std intent (and other
compilers).
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D134283
After upgrading the type deduction machinery to retain type sugar in
D110216, we were left with a situation where there is no general
well behaved mechanism in Clang to unify the type sugar of multiple
deductions of the same type parameter.
So we ended up making an arbitrary choice: keep the sugar of the first
deduction, ignore subsequent ones.
In general, we already had this problem, but in a smaller scale.
The result of the conditional operator and many other binary ops
could benefit from such a mechanism.
This patch implements such a type sugar unification mechanism.
The basics:
This patch introduces a `getCommonSugaredType(QualType X, QualType Y)`
method to ASTContext which implements this functionality, and uses it
for unifying the results of type deduction and return type deduction.
This will return the most derived type sugar which occurs in both X and
Y.
Example:
Suppose we have these types:
```
using Animal = int;
using Cat = Animal;
using Dog = Animal;
using Tom = Cat;
using Spike = Dog;
using Tyke = Dog;
```
For `X = Tom, Y = Spike`, this will result in `Animal`.
For `X = Spike, Y = Tyke`, this will result in `Dog`.
How it works:
We take two types, X and Y, which we wish to unify as input.
These types must have the same (qualified or unqualified) canonical
type.
We dive down fast through top-level type sugar nodes, to the
underlying canonical node. If these canonical nodes differ, we
build a common one out of the two, unifying any sugar they had.
Note that this might involve a recursive call to unify any children
of those. We then return that canonical node, handling any qualifiers.
If they don't differ, we walk up the list of sugar type nodes we dived
through, finding the last identical pair, and returning that as the
result, again handling qualifiers.
Note that this patch will not unify sugar nodes if they are not
identical already. We will simply strip off top-level sugar nodes that
differ between X and Y. This sugar node unification will instead be
implemented in a subsequent patch.
This patch also implements a few users of this mechanism:
* Template argument deduction.
* Auto deduction, for functions returning auto / decltype(auto), with
special handling for initializer_list as well.
Further users will be implemented in a subsequent patch.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D111283
When running in MSVC compatibility mode, previously no deprecated copy
operation warnings (enabled by -Wdeprecated-copy) were raised. This
restriction was already in place when the deprecated copy warning was
first introduced.
This patch removes said restriction so that deprecated copy warnings, if
enabled, are also raised in MSVC compatibility mode. The reasoning here
being that these warnings are still useful when running in MSVC
compatibility mode and also have to be semi-explicitly enabled in the
first place (using -Wdeprecated-copy, -Wdeprecated or -Wextra).
Differential Revision: https://reviews.llvm.org/D133354
This reverts commit d200db3863, which causes a
clang crash. See https://reviews.llvm.org/D111283#3785755
Test case for convenience:
```
template <typename T>
using P = int T::*;
template <typename T, typename... A>
void j(P<T>, T, A...);
template <typename T>
void j(P<T>, T);
struct S {
int b;
};
void g(P<S> k, S s) { j(k, s); }
```
After upgrading the type deduction machinery to retain type sugar in
D110216, we were left with a situation where there is no general
well behaved mechanism in Clang to unify the type sugar of multiple
deductions of the same type parameter.
So we ended up making an arbitrary choice: keep the sugar of the first
deduction, ignore subsequent ones.
In general, we already had this problem, but in a smaller scale.
The result of the conditional operator and many other binary ops
could benefit from such a mechanism.
This patch implements such a type sugar unification mechanism.
The basics:
This patch introduces a `getCommonSugaredType(QualType X, QualType Y)`
method to ASTContext which implements this functionality, and uses it
for unifying the results of type deduction and return type deduction.
This will return the most derived type sugar which occurs in both X and
Y.
Example:
Suppose we have these types:
```
using Animal = int;
using Cat = Animal;
using Dog = Animal;
using Tom = Cat;
using Spike = Dog;
using Tyke = Dog;
```
For `X = Tom, Y = Spike`, this will result in `Animal`.
For `X = Spike, Y = Tyke`, this will result in `Dog`.
How it works:
We take two types, X and Y, which we wish to unify as input.
These types must have the same (qualified or unqualified) canonical
type.
We dive down fast through top-level type sugar nodes, to the
underlying canonical node. If these canonical nodes differ, we
build a common one out of the two, unifying any sugar they had.
Note that this might involve a recursive call to unify any children
of those. We then return that canonical node, handling any qualifiers.
If they don't differ, we walk up the list of sugar type nodes we dived
through, finding the last identical pair, and returning that as the
result, again handling qualifiers.
Note that this patch will not unify sugar nodes if they are not
identical already. We will simply strip off top-level sugar nodes that
differ between X and Y. This sugar node unification will instead be
implemented in a subsequent patch.
This patch also implements a few users of this mechanism:
* Template argument deduction.
* Auto deduction, for functions returning auto / decltype(auto), with
special handling for initializer_list as well.
Further users will be implemented in a subsequent patch.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D111283
I discovered this additional bug at the end of working on D132906
In Sema::CheckCompletedCXXClass(...) uses a lambda CheckForDefaultedFunction to
verify each CXXMethodDecl holds to the expected invariants before passing them
on to CheckForDefaultedFunction.
It is currently missing a check that it is not deleted, this adds that check and
a test that crashed without this check.
This fixes: https://github.com/llvm/llvm-project/issues/57516
Differential Revision: https://reviews.llvm.org/D133177
This change refactors the MuiltiplexExternalSemaSource to take ownership
of the underlying sources. As a result it makes a larger cleanup of
external source ownership in Sema and the ChainedIncludesSource.
Reviewed By: aaron.ballman, aprantl
Differential Revision: https://reviews.llvm.org/D133158
In Sema::CheckCompletedCXXClass(...) It used a lambda CheckForDefaultedFunction
the CXXMethodDecl passed to CheckForDefaultedFunction may not be a special
member function and so before attempting to apply functions that only apply to
special member functions it needs to check. It fails to do this before calling
DefineDefaultedFunction(...). This PR adds that check and test to verify we no
longer crash.
This fixes https://github.com/llvm/llvm-project/issues/57431
Differential Revision: https://reviews.llvm.org/D132906
This patch implements P0848 in Clang.
During the instantiation of a C++ class, in `Sema::ActOnFields`, we evaluate constraints for all the SMFs and compare the constraints to compute the eligibility. We defer the computation of the type's [copy-]trivial bits from addedMember to the eligibility computation, like we did for destructors in D126194. `canPassInRegisters` is modified as well to better respect the ineligibility of functions.
Note: Because of the non-implementation of DR1734 and DR1496, I treat deleted member functions as 'eligible' for the purpose of [copy-]triviallity. This is unfortunate, but I couldn't think of a way to make this make sense otherwise.
Reviewed By: #clang-language-wg, cor3ntin, aaron.ballman
Differential Revision: https://reviews.llvm.org/D128619