Reimplement `SBFileSpec.fullpath` to (indirectly) use `FileSpec::GetPath`.
Instead of hardcoding a `/` separator, use `GetPath`. This makes use of the
`FileSpec`'s internal style, which for example allows for backslash on Windows
where required.
It's not obvious from looking at the source, but the `fullpath` property is
implemented with `str`, which calls `GetDescription`, which finally calls
`GetPath`.
Differential Revision: https://reviews.llvm.org/D138348
Fix `fullpath` to not assume a `/` path separator. This was discovered when
D133130 failed on Windows. Use `os.path.join()` to fix the issue.
Reviewed By: mib
Differential Revision: https://reviews.llvm.org/D133366
Modify `SBTypeNameSpecifier` and `lldb_private::TypeMatcher` so they
have an enum value for the type of matching to perform instead of an
`m_is_regex` boolean value.
This change paves the way for introducing formatter matching based on
the result of a python callback in addition to the existing name-based
matching. See the RFC thread at
https://discourse.llvm.org/t/rfc-python-callback-for-data-formatters-type-matching/64204
for more details.
Differential Revision: https://reviews.llvm.org/D133240
I went over the output of the following mess of a command:
(ulimit -m 2000000; ulimit -v 2000000; git ls-files -z | parallel
--xargs -0 cat | aspell list --mode=none --ignore-case | grep -E
'^[A-Za-z][a-z]*$' | sort | uniq -c | sort -n | grep -vE '.{25}' |
aspell pipe -W3 | grep : | cut -d' ' -f2 | less)
and proceeded to spend a few days looking at it to find probable typos
and fixed a few hundred of them in all of the llvm project (note, the
ones I found are not anywhere near all of them, but it seems like a
good start).
Differential revision: https://reviews.llvm.org/D131122
Summary:
Many times when debugging variables might not be available even though a user can successfully set breakpoints and stops somewhere. Letting the user know will help users fix these kinds of issues and have a better debugging experience.
Examples of this include:
- enabling -gline-tables-only and being able to set file and line breakpoints and yet see no variables
- unable to open object file for DWARF in .o file debugging for darwin targets due to modification time mismatch or not being able to locate the N_OSO file.
This patch adds an new API to SBValueList:
lldb::SBError lldb::SBValueList::GetError();
object so that if you request a stack frame's variables using SBValueList SBFrame::GetVariables(...), you can get an error the describes why the variables were not available.
This patch adds the ability to get an error back when requesting variables from a lldb_private::StackFrame when calling GetVariableList.
It also now shows an error in response to "frame variable" if we have debug info and are unable to get varialbes due to an error as mentioned above:
(lldb) frame variable
error: "a.o" object from the "/tmp/libfoo.a" archive: either the .o file doesn't exist in the archive or the modification time (0x63111541) of the .o file doesn't match
Reviewers: labath JDevlieghere aadsm yinghuitan jdoerfert sscalpone
Subscribers:
Differential Revision: https://reviews.llvm.org/D133164
This patch adds new SBDebugger::GetSetting() API which
enables client to access settings as SBStructedData.
Implementation wise, a new ToJSON() virtual function is added to OptionValue
class so that each concrete child class can override and provides its
own JSON representation. This patch aims to define the APIs and implement
a common set of OptionValue child classes, leaving the remaining for
future patches.
This patch is used later by auto deduce source map from source line breakpoint
feature for testing generated source map entries.
Differential Revision: https://reviews.llvm.org/D133038
Many times when debugging variables might not be available even though a user can successfully set breakpoints and stops somewhere. Letting the user know will help users fix these kinds of issues and have a better debugging experience.
Examples of this include:
- enabling -gline-tables-only and being able to set file and line breakpoints and yet see no variables
- unable to open object file for DWARF in .o file debugging for darwin targets due to modification time mismatch or not being able to locate the N_OSO file.
This patch adds an new API to SBValueList:
lldb::SBError lldb::SBValueList::GetError();
object so that if you request a stack frame's variables using SBValueList SBFrame::GetVariables(...), you can get an error the describes why the variables were not available.
This patch adds the ability to get an error back when requesting variables from a lldb_private::StackFrame when calling GetVariableList.
It also now shows an error in response to "frame variable" if we have debug info and are unable to get varialbes due to an error as mentioned above:
(lldb) frame variable
error: "a.o" object from the "/tmp/libfoo.a" archive: either the .o file doesn't exist in the archive or the modification time (0x63111541) of the .o file doesn't match
Differential Revision: https://reviews.llvm.org/D133164
Fixes broken support for: `target.module[re.compile("libFoo")]`
There were two issues:
1. The type check was expecting `re.SRE_Pattern`
2. The expression to search the module path had a typo
In the first case, `re.SRE_Pattern` does not exist in Python 3, and is replaced
with `re.Pattern`.
While editing this code, I changed the type checks to us `isinstance`, which is
the conventional way of type checking.
From the docs on `type()`:
> The `isinstance()` built-in function is recommended for testing the type of an object, because it takes subclasses into account.
Differential Revision: https://reviews.llvm.org/D133130
Symbols that have the section index of SHN_ABS were previously creating extra top level sections that contained the value of the symbol as if the symbol's value was an address. As far as I can tell, these symbol's values are not addresses, even if they do have a size. To make matters worse, adding these extra sections can stop address lookups from succeeding if the symbol's value + size overlaps with an existing section as these sections get mapped into memory when the image is loaded by the dynamic loader. This can cause stack frames to appear empty as the address lookup fails completely.
This patch:
- doesn't create a section for any SHN_ABS symbols
- makes symbols that are absolute have values that are not addresses
- add accessors to SBSymbol to get the value and size of a symbol as raw integers. Prevoiusly there was no way to access a symbol's value from a SBSymbol because the only accessors were:
SBAddress SBSymbol::GetStartAddress();
SBAddress SBSymbol::GetEndAddress();
and these accessors would return an invalid SBAddress if the symbol's value wasn't an address
- Adds a test to ensure no ".absolute.<symbol-name>" sections are created
- Adds a test to test the new SBSymbol APIs
Differential Revision: https://reviews.llvm.org/D131705
Add bindings for the `TraceCursor` to allow for programatic traversal of
traces.
This diff adds bindings for all public `TraceCursor` methods except
`GetHwClock` and also adds `SBTrace::CreateNewCursor`. A new unittest
has been added to TestTraceLoad.py that uses the new `SBTraceCursor` API
to test that the sequential and random access APIs of the `TraceCursor`
are equivalent.
This diff depends on D130925.
Test Plan:
`ninja lldb-dotest && ./bin/lldb-dotest -p TestTraceLoad`
Differential Revision: https://reviews.llvm.org/D130930
D128477 adds the control flow kind for `Instruction` and displays this
in the `thread trace dump instruction -k` command.
This diff exposes the control flow kind via the new
`SBInstruction::GetControlFlowKind` method.
I've expanded `TestDisassembleRawData` to test this method, but please
let me know if there are any other unittests that should also be updated.
Test Plan:
`./bin/lldb-dotest -p TestDisassembleRawData`
Differential Revision: https://reviews.llvm.org/D131005
A trace bundle contains many trace files, and, in the case of intel pt, the
largest files are often the context switch traces because they are not
compressed by default. As a way to improve this, I'm adding a --compact option
to the `trace save` command that filters out unwanted processes from the
context switch traces. Eventually we can do the same for intel pt traces as
well.
Differential Revision: https://reviews.llvm.org/D129239
This commit adds SBSection.GetAlignment(), and SBSection.alignment as a python property to lldb.
Reviewed By: clayborg, JDevlieghere, labath
Differential Revision: https://reviews.llvm.org/D128069
This commit adds SBSection.GetAlignment(), and SBSection.alignment as a python property to lldb.
Reviewed By: clayborg, JDevlieghere, labath
Differential Revision: https://reviews.llvm.org/D128069
Add trace load functionality to SBDebugger via the `LoadTraceFromFile` method.
Update intelpt test case class to have `testTraceLoad` method so we can take advantage of
the testApiAndSB decorator to test both the CLI and SB without duplicating code.
Differential Revision: https://reviews.llvm.org/D128107
This patch renames the `SBCompileUnit::GetIndexForLineEntry` api to be
an overload of `SBCompileUnit::FindLineEntryIndex`
Differential Revision: https://reviews.llvm.org/D125594
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds a new `GetIndexForLineEntry` method to the `SBCompileUnit`
class. As the name suggests, given an `SBLineEntry` object, this will
return the line entry index within a specific compile unit.
This method can take a `exact` boolean that will make sure that the
provided line entry matches perfectly another line entry in the compile unit.
rdar://47450887
Differention Revision: https://reviews.llvm.org/D125437
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
As noticed in D87637, when LLDB crashes, we only print stack traces if
LLDB is directly executed, not when used via Python bindings. Enabling
this by default may be undesirable (libraries shouldn't be messing with
signal handlers), so make this an explicit opt-in.
I "commandeered" this patch from Jordan Rupprecht who put this up for
review originally.
Differential revision: https://reviews.llvm.org/D91835
Expose diagnostic events through the SB API. Unlike the progress events,
I opted to use a SBStructuredData so that we can add fields in the
future.
Differential revision: https://reviews.llvm.org/D121818
They don't require that the memory return address be restored prior to
function exit, so there's no guarantee the value is correct. It's better
to return nothing that something that's not accurate.
Differential Revision: https://reviews.llvm.org/D121348
Add `IsAggregateType` to the SB API.
I'd like to use this from tests, and there are numerous other `Is<X>Type`
predicates on `SBType`.
Differential Revision: https://reviews.llvm.org/D121252
This patch relands commit 3e3e79a9e4, and
fixes the memory sanitizer issue described in D120284, by removing the
output arguments from the LLDB_INSTRUMENT_VA invocation.
Differential Revision: https://reviews.llvm.org/D120599
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch is a follow-up of D120100 to address some feedbacks from
@labath.
This should mainly fix the race issue with the even listener by moving
the listener setup to the main thread.
This also changes the SBDebugger::GetProgressFromEvent SWIG binding
arguments to be output only, so the user don't have to provide them.
Finally, this updates the test to check it the out arguments are returned
in a tuple and re-enables the test on all platforms.
Differential Revision: https://reviews.llvm.org/D120284
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch defines the SBDebugger::eBroadcastBitProgress enum in the SWIG
interface and exposes the SBDebugger::{GetProgressFromEvent,GetBroadcaster}
methods as well.
This allows to exercise the API from the script interpreter using python.
Differential Revision: https://reviews.llvm.org/D120100
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Add Thread::GetSiginfo() and SBThread::GetSiginfo() methods to retrieve
the siginfo value from server.
Differential Revision: https://reviews.llvm.org/D118055
Add Thread::GetSiginfo() and SBThread::GetSiginfo() methods to retrieve
the siginfo value from server.
Differential Revision: https://reviews.llvm.org/D118055
This patch introduces a new SBAPI method: `SBModule::IsFileBacked`
As the name suggests, it tells the user if the module's object file is
on disk or in memory.
rdar://68538278
Differential Revision: https://reviews.llvm.org/D118261
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
It complements the existing SBDebugger::SetCurrentPlatformSDKRoot and
allows one to set the sysroot of a platform without making it current.
Differential Revision: https://reviews.llvm.org/D117550
This patch introduces a new method to SBData: SetDataWithOwnership.
Instead of referencing the pointer to the data, this method copies the
data buffer into lldb's heap memory.
This can prevent having the underlying DataExtractor object point to
freed/garbage-collected memory.
Differential Revision: https://reviews.llvm.org/D115652
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Right now if the LLDB is compiled under the windows with static vcruntime library, the -o and -k commands will not work.
The problem is that the LLDB create FILE* in lldb.exe and pass it to liblldb.dll which is an object from CRT.
Since the CRT is statically linked each of these module has its own copy of the CRT with it's own global state and the LLDB should not share CRT objects between them.
In this change I moved the logic of creating FILE* out of commands stream from Driver class to SBDebugger.
To do this I added new method: SBError SBDebugger::SetInputStream(SBStream &stream)
Command to build the LLDB:
cmake -G Ninja -DLLVM_ENABLE_PROJECTS="clang;lldb;libcxx" -DLLVM_USE_CRT_RELEASE="MT" -DLLVM_USE_CRT_MINSIZEREL="MT" -DLLVM_USE_CRT_RELWITHDEBINFO="MT" -DP
YTHON_HOME:FILEPATH=C:/Python38 -DCMAKE_C_COMPILER:STRING=cl.exe -DCMAKE_CXX_COMPILER:STRING=cl.exe ../llvm
Command which will fail:
lldb.exe -o help
See discord discussion for more details: https://discord.com/channels/636084430946959380/636732809708306432/854629125398724628
This revision is for the further discussion.
Reviewed By: teemperor
Differential Revision: https://reviews.llvm.org/D104413
This diff is adding the capping_size determination for the list and forward list, to limit the number of children to be displayed. Also it modifies and unifies tests for libcxx and libstdcpp list data formatter.
Reviewed By: wallace
Differential Revision: https://reviews.llvm.org/D114433
It is surprisingly difficult to write a simple python script that
can reliably `import lldb` without failing, or crashing. I'm
currently resorting to convolutions like this:
def find_lldb(may_reexec=False):
if prefix := os.environ.get('LLDB_PYTHON_PREFIX'):
if os.path.realpath(prefix) != os.path.realpath(sys.prefix):
raise Exception("cannot import lldb.\n"
f" sys.prefix should be: {prefix}\n"
f" but it is: {sys.prefix}")
else:
line1, line2 = subprocess.run(
['lldb', '-x', '-b', '-o', 'script print(sys.prefix)'],
encoding='utf8', stdout=subprocess.PIPE,
check=True).stdout.strip().splitlines()
assert line1.strip() == '(lldb) script print(sys.prefix)'
prefix = line2.strip()
os.environ['LLDB_PYTHON_PREFIX'] = prefix
if sys.prefix != prefix:
if not may_reexec:
raise Exception(
"cannot import lldb.\n" +
f" This python, at {sys.prefix}\n"
f" does not math LLDB's python at {prefix}")
os.environ['LLDB_PYTHON_PREFIX'] = prefix
python_exe = os.path.join(prefix, 'bin', 'python3')
os.execl(python_exe, python_exe, *sys.argv)
lldb_path = subprocess.run(['lldb', '-P'],
check=True, stdout=subprocess.PIPE,
encoding='utf8').stdout.strip()
sys.path = [lldb_path] + sys.path
This patch aims to replace all that with:
#!/usr/bin/env lldb-python
import lldb
...
... by adding the following features:
* new command line option: --print-script-interpreter-info. This
prints language-specific information about the script interpreter
in JSON format.
* new tool (unix only): lldb-python which finds python and exec's it.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D112973
Currently calling SBType::IsTypeComplete returns true for record types if and
only if the underlying record in our internal Clang AST has a definition.
The function however doesn't actually force the loading of any external
definition from debug info, so it currently can return false even if the type is
actually defined in a program's debug info but LLDB hasn't lazily created the
definition yet.
This patch changes the behaviour to always load the definition first so that
IsTypeComplete now consistently returns true if there is a definition in the
module/target.
The motivation for this patch is twofold:
* The API is now arguably more useful for the user which don't know or care
about the internal lazy loading mechanism of LLDB.
* With D101950 there is no longer a good way to ask a Decl for a definition
without automatically pulling in a definition from the ExternalASTSource. The
current behaviour doesn't seem useful enough to justify the necessary
workarounds to preserve it for a time after D101950.
Note that there was a test that used this API to test lazy loading of debug info
but that has been replaced with TestLazyLoading by now (which just dumps the
internal Clang AST state instead).
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D112615
This patch adds support for memory regions in Scripted Processes.
This is necessary to read the stack memory region in order to
reconstruct each stackframe of the program.
In order to do so, this patch makes some changes to the SBAPI, namely:
- Add a new constructor for `SBMemoryRegionInfo` that takes arguments
such as the memory region name, address range, permissions ...
This is used when reading memory at some address to compute the offset
in the binary blob provided by the user.
- Add a `GetMemoryRegionContainingAddress` method to `SBMemoryRegionInfoList`
to simplify the access to a specific memory region.
With these changes, lldb is now able to unwind the stack and reconstruct
each frame. On top of that, reloading the target module at offset 0 allows
lldb to symbolicate the `ScriptedProcess` using debug info, similarly to an
ordinary Process.
To test this, I wrote a simple program with multiple function calls, ran it in
lldb, stopped at a leaf function and read the registers values and copied
the stack memory into a binary file. These are then used in the python script.
Differential Revision: https://reviews.llvm.org/D108953
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This change adds AllocateMemory and DeallocateMemory methods to the SBProcess
API, so that clients can allocate and deallocate memory blocks within the
process being debugged (for storing JIT-compiled code or other uses).
(I am developing a debugger + REPL using the API; it will need to store
JIT-compiled code within the target.)
Reviewed By: clayborg, jingham
Differential Revision: https://reviews.llvm.org/D105389
Add a new feature to process save-core on Darwin systems -- for
lldb to create a user process corefile with only the dirty (modified
memory) pages included. All of the binaries that were used in the
corefile are assumed to still exist on the system for the duration
of the use of the corefile. A new --style option to process save-core
is added, so a full corefile can be requested if portability across
systems, or across time, is needed for this corefile.
debugserver can now identify the dirty pages in a memory region
when queried with qMemoryRegionInfo, and the size of vm pages is
given in qHostInfo.
Create a new "all image infos" LC_NOTE for Mach-O which allows us
to describe all of the binaries that were loaded in the process --
load address, UUID, file path, segment load addresses, and optionally
whether code from the binary was executing on any thread. The old
"read dyld_all_image_infos and then the in-memory Mach-O load
commands to get segment load addresses" no longer works when we
only have dirty memory.
rdar://69670807
Differential Revision: https://reviews.llvm.org/D88387