This is a fairly large changeset, but it can be broken into a few
pieces:
- `llvm/Support/*TargetParser*` are all moved from the LLVM Support
component into a new LLVM Component called "TargetParser". This
potentially enables using tablegen to maintain this information, as
is shown in https://reviews.llvm.org/D137517. This cannot currently
be done, as llvm-tblgen relies on LLVM's Support component.
- This also moves two files from Support which use and depend on
information in the TargetParser:
- `llvm/Support/Host.{h,cpp}` which contains functions for inspecting
the current Host machine for info about it, primarily to support
getting the host triple, but also for `-mcpu=native` support in e.g.
Clang. This is fairly tightly intertwined with the information in
`X86TargetParser.h`, so keeping them in the same component makes
sense.
- `llvm/ADT/Triple.h` and `llvm/Support/Triple.cpp`, which contains
the target triple parser and representation. This is very intertwined
with the Arm target parser, because the arm architecture version
appears in canonical triples on arm platforms.
- I moved the relevant unittests to their own directory.
And so, we end up with a single component that has all the information
about the following, which to me seems like a unified component:
- Triples that LLVM Knows about
- Architecture names and CPUs that LLVM knows about
- CPU detection logic for LLVM
Given this, I have also moved `RISCVISAInfo.h` into this component, as
it seems to me to be part of that same set of functionality.
If you get link errors in your components after this patch, you likely
need to add TargetParser into LLVM_LINK_COMPONENTS in CMake.
Differential Revision: https://reviews.llvm.org/D137838
Hardware single stepping is not currently supported by the linux kernel.
In order to support single step debugging, add EmulateInstructionLoongArch
to implement the software Single Stepping. This patch only support the
simplest single step execution of non-jump instructions.
Reviewed By: SixWeining, DavidSpickett
Differential Revision: https://reviews.llvm.org/D139158
Hardware single stepping is not currently supported by the linux kernel.
In order to support single step debugging, add EmulateInstructionLoongArch
to implement the software Single Stepping. This patch only support the
simplest single step execution of non-jump instructions.
Reviewed By: SixWeining, DavidSpickett
Differential Revision: https://reviews.llvm.org/D139158
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Use the same register layout as Linux kernel, implement the
related read and write operations.
Reviewed By: SixWeining, xen0n, DavidSpickett
Differential Revision: https://reviews.llvm.org/D138407
Add as little code as possible to allow compiling lldb on LoongArch.
Actual functionality will be implemented later.
Reviewed By: SixWeining, DavidSpickett
Differential Revision: https://reviews.llvm.org/D136578
The size of the m_hwp_regs array should match the default value of
m_max_hwp_supported. This ensures that no out-of-bounds accesses
occur, even if the array is accessed prior to a call to
ReadHardwareDebugInfo().
Fixes https://github.com/llvm/llvm-project/issues/54520, see also
there for additional background.
Differential Revision: https://reviews.llvm.org/D136144
All callers were either assuming their pointer was not null before calling
this, or checking beforehand.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D135668
Most of the paths to this never passed nullptr intentionally. Those
that possibly could have were assuming it was not null elsehwere,
so would have crashed.
I've added asserts in those cases.
At least one case was relying on GetAsMemoryData to return an error
when it was given nullptr. So I've hoisted that error setting code
out into the caller.
Depends on D134963
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D134965
Bionic's <sys/procfs.h> defines the necessary symbols. Remove the
specialization for Android and the now-unnecessary include of
<sys/ptrace.h>. This also helps resolve issues when building the
x86/x86_64 lldb-server for Android.
Curiously, the default branch to include <sys/procfs.h> doesn't seem
necessary on Linux. I'll remove it and add it back if it breaks other
builders.
Differential Revision: https://reviews.llvm.org/D132514
Add:
- `EmulateInstructionRISCV`, which can be used for riscv32 and riscv64.
- Add unittests for EmulateInstructionRISCV.
Note: Compressed instructions set (RVC) was still not supported in this patch.
Reviewed By: DavidSpickett
Differential Revision: https://reviews.llvm.org/D131759
In this switch case we didn't handle possible errors in `ResumeThread()`, it's hard to get helpful information when it goes wrong.
Reviewed By: DavidSpickett
Differential Revision: https://reviews.llvm.org/D131946
Pavel Labath taught me that clang-format sorts headers automatically
using llvm's rules, and it's better not to have spaces between
So in this diff I'm removing those spaces and formatting them as well.
I used `clang-format -i` to format these files.
Fixed an inconsistency between D130985 and D130342
This should be a follow-up of D130985
Reviewed By: DavidSpickett
Differential Revision: https://reviews.llvm.org/D131667
This patch is based on the minimal extract of D128250.
What is implemented:
- Use the same register layout as Linux kernel and mock read/write for `x0` register (the always zero register).
- Refactor some duplicate code, and delete unused register definitions.
Reviewed By: DavidSpickett
Differential Revision: https://reviews.llvm.org/D130342
@clayborg found a potential race condition when setting a static
variable. The fix seems simply to use call_once.
All relevant tests pass.
Differential Revision: https://reviews.llvm.org/D131081
Currently, lldb-server was opening the executable file to determine the
process architecture (to differentiate between 32 and 64 bit
architecture flavours). This isn't a particularly trustworthy source of
information (the file could have been changed since the process was
started) and it is not always available (file could be deleted or
otherwise inaccessible).
Unfortunately, ptrace does not give us a direct API to access the
process architecture, but we can still infer it via some of its
responses -- given that the general purpose register set of 64-bit
applications is larger [citation needed] than the GPR set of 32-bit
ones, we can just ask for the application GPR set and check its size.
This is what this patch does.
Differential Revision: https://reviews.llvm.org/D130985
It turns out that cgroup filtering is relatively trivial and works
really nicely. Thid diffs adds automatic cgroup filtering when in
per-cpu mode, unless a new --disable-cgroup-filtering flag is passed in
the start command. At least on Meta machines, all processes are spawned
inside a cgroup by default, which comes super handy, because per cpu
tracing is now much more precise.
A manual test gave me this result
- Without filtering:
Total number of trace items: 36083
Total number of continuous executions found: 229
Number of continuous executions for this thread: 2
Total number of PSB blocks found: 98
Number of PSB blocks for this thread 2
Total number of unattributed PSB blocks found: 38
- With filtering:
Total number of trace items: 87756
Total number of continuous executions found: 123
Number of continuous executions for this thread: 2
Total number of PSB blocks found: 10
Number of PSB blocks for this thread 3
Total number of unattributed PSB blocks found: 2
Filtering gives us great results. The number of instructions collected
more than double (probalby because we have less noise in the trace), and
we have much less unattributed PSBs blocks and unrelated PSBs in
general. The ones that are unrelated probably belong to other processes
in the same cgroup.
Differential Revision: https://reviews.llvm.org/D129257
Implement support for the "t" action that is used to stop a thread.
Normally this action is used only in non-stop mode. However, there's
no technical reason why it couldn't be also used in all-stop mode,
e.g. to express "resume all threads except ..." (`t:...;c`).
While at it, add a more complete test for vCont correctly resuming
a subset of program's threads.
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.llvm.org/D126983
Fix ThreadStopInfo struct to include the signal number for all events.
Since signo was not included in the details for fork, vfork
and vforkdone stops, the code incidentally referenced the wrong union
member, resulting in wrong signo being sent.
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.llvm.org/D127193
Having a member variable TraceIntelPT * makes it look as if it was
optional. I'm using instead a weak_ptr to indicate that it's not
optional and the object is under the ownership of TraceIntelPT.
Besides that, I've simplified the Perf aux and data buffers copying by
using vector.insert.
I'm also renaming Lookup2 to Lookup. The 2 in the name is confusing.
Differential Revision: https://reviews.llvm.org/D127881