In preparation for eanbling 64bit support in LLDB switching to use llvm::formatv
instead of format MACROs.
Reviewed By: labath, JDevlieghere
Differential Revision: https://reviews.llvm.org/D139955
This patch clang-formats AppendPathComponents in PathMappingList.cpp.
Without this patch, clang-format would indent the body of the
following function by four spaces.
std::optional::value() has undesired exception checking semantics and is
unavailable in older Xcode (see _LIBCPP_AVAILABILITY_BAD_OPTIONAL_ACCESS). The
call sites block std::optional migration.
std::optional::value() has undesired exception checking semantics and is
unavailable in some older Xcode. The call sites block std::optional migration.
The dynamic linker on Darwin, dyld, can provide status of
the process state for a few significant points early on,
most importantly, when libSystem has been initialized and it
is safe to call functions behind the scenes. Pipe this
information up from debugserver to DynamicLoaderMacOS, for
the DynamicLoader::IsFullyInitialized() method, then have
Thread::SafeToCallFunctions use this information. Finally,
for the two utility functions in the AppleObjCRuntimeV2
LanguageRuntime plugin that I was fixing, call this method
before running our utility functions to collect the list of
objc classes registered in the runtime.
User expressions will still be allowed to run any time -
we assume the user knows what they are doing - but these
two additional utility functions that they are unaware of
will be limited by this state.
Differential Revision: https://reviews.llvm.org/D139054
rdar://102436092
can probably make function calls.
The breakpoint list is a list of raw pointers. When breakpoints are removed, the memory is not deleted. Switch to unique pointers. I did some minor cleanup while making this change.
Found by the LLDB command interpreter fuzzer. The input is `br m G`.
This relands commit `71f3cac7895ad516ec25438f803ed3c9916c215a`
Fixes LLDB Linux bots and improves TypeSystem flushing for shared libraries.
Differential Revision: https://reviews.llvm.org/D138724
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
**Summary**
This patch addresses #59128, where LLDB would crash when evaluating
importing a type that has been imported before into the same target.
The proposed solution is to clear the scratch AST (and associated
persistent variables, `ClangASTImporter`, etc.) whenever a module that
could've owned one of the stale `TypeSystem`s gets unloaded/destroyed.
Details:
1. The first time we evaluate the expression we import the decl for Foo into the Targets scratch AST
context (lives in m_scratch_type_system_map). During this process we also create a ClangASTImporter
that lives in the ClangPersistentVariables::m_ast_importer_sp. This importer has decl tracking
structures which reference the source AST that the decl got imported from. This importer also gets
re-used for all calls to DeportType (which we use to copy the final decl into the Targets scratch AST).
2. Rebuilding the executable triggers a tear-down of the Module that was backing the ASTContext that
we originally got the Foo decl from (which lived in the Module::m_type_system_map). However, the Target’s scratch AST lives on.
3. Re-running the same expression will now create a new ASTImporterDelegate where the destination TranslationUnitDecl is
the same as the one from step (1).
4. When importing the new Foo decl we first try to find it in the destination DeclContext, which happens to be
the scratch destination TranslationUnitDecl. The `Foo` decl exists in this context since we copied it into
the scratch AST in the first run. The ASTImporter then queries LLDB for the origin of that decl. Using the
same persistent variable ClangASTImporter we claim the decl has an origin in the AST context that got torn
down with the Module. This faulty origin leads to a use-after-free.
**Testing**
- Added API test
Differential Revision: https://reviews.llvm.org/D138724
A previous patch added the ability for us to tell if types were forcefully completed. This patch adds the ability to see which modules have forcefully completed types and aggregates the number of modules with forcefully completed types at the root level.
We add a module specific setting named "debugInfoHadIncompleteTypes" that is a boolean value. We also aggregate the number of modules at the root level that had incomplete debug info with a key named "totalModuleCountWithIncompleteTypes" that is a count of number of modules that had incomplete types.
Differential Revision: https://reviews.llvm.org/D138638
We have a statistic on each module named "debugInfoHadVariableErrors" which tracks when we have debug info, but an error prevented the variables from being displayed. This patch adds a new top level statistic named "totalModuleCountWithVariableErrors" which is a count of the modules that have "debugInfoHadVariableErrors" set to true.
Differential Revision: https://reviews.llvm.org/D138383
When a process gets restarted TypeSystem objects associated with it
may get deleted, and any CompilerType objects holding on to a
reference to that type system are a use-after-free in waiting. Because
of the SBAPI, we don't have tight control over where CompilerTypes go
and when they are used. This is particularly a problem in the Swift
plugin, where the scratch TypeSystem can be restarted while the
process is still running. The Swift plugin has a lock to prevent
abuse, but where there's a lock there can be bugs.
This patch changes CompilerType to store a std::weak_ptr<TypeSystem>.
Most of the std::weak_ptr<TypeSystem>* uglyness is hidden by
introducing a wrapper class CompilerType::WrappedTypeSystem that has a
dyn_cast_or_null() method. The only sites that need to know about the
weak pointer implementation detail are the ones that deal with
creating TypeSystems.
rdar://101505232
Differential Revision: https://reviews.llvm.org/D136650
Use `break 0x5` for LoongArch software breakpoint traps.
The magic number 0x5 means `BRK_SSTEPBP` as defined in
the kernel header `asm/break.h` on LoongArch.
Reviewed By: SixWeining, xen0n
Differential Revision: https://reviews.llvm.org/D137519
We generally prohibit this at a higher level - for instance requiring
the process to be stopped for "expr". But when we trigger an expression
for internal purposes (e.g. to fetch types from the ObjC runtime) we weren't
checking the process state. Now we explicitly check this at the very start
of the job so we don't get into bad states.
Differential Revision: https://reviews.llvm.org/D137684
PlatformDarwinKernel::GetSupportedArchitectures returns a list
of architectures that are possible for this platform; it was using
a compile-time check for the debug host to decide the list of arches
that were valid. This was copied from a codepath doing native process
debugging, and was clearly wrong for kernel debugging, but it had
not happened to cause problems so it went unnoticed for a long time.
Small NFC change to the logging messages of Target::SetArchitecture
to make them a little more explicit about how the architecture is
being modified/replaced.
Differential Revision: https://reviews.llvm.org/D137301
rdar://101690111
Context: I plan on using this change primarily downstream in the apple
fork of llvm to track swift module loading time.
Reviewed By: clayborg, tschuett
Differential Revision: https://reviews.llvm.org/D137191
This patch adds a new matching method for data formatters, in addition
to the existing exact typename and regex-based matching. The new method
allows users to specify the name of a Python callback function that
takes a `SBType` object and decides whether the type is a match or not.
Here is an overview of the changes performed:
- Add a new `eFormatterMatchCallback` matching type, and logic to handle
it in `TypeMatcher` and `SBTypeNameSpecifier`.
- Extend `FormattersMatchCandidate` instances with a pointer to the
current `ScriptInterpreter` and the `TypeImpl` corresponding to the
candidate type, so we can run registered callbacks and pass the type
to them. All matcher search functions now receive a
`FormattersMatchCandidate` instead of a type name.
- Add some glue code to ScriptInterpreterPython and the SWIG bindings to
allow calling a formatter matching callback. Most of this code is
modeled after the equivalent code for watchpoint callback functions.
- Add an API test for the new callback-based matching feature.
For more context, please check the RFC thread where this feature was
originally discussed:
https://discourse.llvm.org/t/rfc-python-callback-for-data-formatters-type-matching/64204/11
Differential Revision: https://reviews.llvm.org/D135648
The JSON dumper is very minimalistic. It pretty much only shows the
delimiting instruction IDs of every segment, so that further queries to
the SBCursor can be used to make sense of the data. It's main purpose is
to be serialized somewhat cheaply.
I also renamed untracedSegment to untracedPrefixSegment, in case in the
future we add an untracedSuffixSegment. In any case, this new name is
more explicit, which I like.
Differential Revision: https://reviews.llvm.org/D136034
This diff implements the reconstruction algorithm for the call tree and
add tests.
See TraceDumper.h for documentation and explanations.
One important detail is that the tree objects are in TraceDumper, even
though Trace.h is a better home. I'm leaving that as future work.
Another detail is that this code is as slow as dumping the entire
symolicated trace, which is not that bad tbh. The reason is that we use
symbols throughout the algorithm and we are not being careful about
memory and speed. This is also another area for future improvement.
Lastly, I made sure that incomplete traces work, i.e. you start tracing
very deep in the stack or failures randomly appear in the trace.
Differential Revision: https://reviews.llvm.org/D135917
When UserExpression::Evaluate() fails and doesn't return a ValueObject there is no vehicle for returning the error in the return value.
This behavior can be observed by applying the following patch:
diff --git a/lldb/source/Target/Target.cpp b/lldb/source/Target/Target.cpp
index f1a311b7252c..58c03ccdb068 100644
--- a/lldb/source/Target/Target.cpp
+++ b/lldb/source/Target/Target.cpp
@@ -2370,6 +2370,7 @@ UserExpression *Target::GetUserExpressionForLanguage(
Expression::ResultType desired_type,
const EvaluateExpressionOptions &options, ValueObject *ctx_obj,
Status &error) {
+ error.SetErrorStringWithFormat("Ha ha!"); return nullptr;
auto type_system_or_err = GetScratchTypeSystemForLanguage(language);
if (auto err = type_system_or_err.takeError()) {
error.SetErrorStringWithFormat(
and then running
$ lldb -o "p 1"
(lldb) p 1
(lldb)
This patch fixes this by creating an empty result ValueObject that wraps the error.
Differential Revision: https://reviews.llvm.org/D135998
When UserExpression::Evaluate() fails and doesn't return a ValueObject there is no vehicle for returning the error in the return value.
This behavior can be observed by applying the following patch:
diff --git a/lldb/source/Target/Target.cpp b/lldb/source/Target/Target.cpp
index f1a311b7252c..58c03ccdb068 100644
--- a/lldb/source/Target/Target.cpp
+++ b/lldb/source/Target/Target.cpp
@@ -2370,6 +2370,7 @@ UserExpression *Target::GetUserExpressionForLanguage(
Expression::ResultType desired_type,
const EvaluateExpressionOptions &options, ValueObject *ctx_obj,
Status &error) {
+ error.SetErrorStringWithFormat("Ha ha!"); return nullptr;
auto type_system_or_err = GetScratchTypeSystemForLanguage(language);
if (auto err = type_system_or_err.takeError()) {
error.SetErrorStringWithFormat(
and then running
$ lldb -o "p 1"
(lldb) p 1
(lldb)
This patch fixes this by creating an empty result ValueObject that wraps the error.
Differential Revision: https://reviews.llvm.org/D135998
All callers were either assuming their pointer was not null before calling
this, or checking beforehand.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D135668
Most of the paths to this never passed nullptr intentionally. Those
that possibly could have were assuming it was not null elsehwere,
so would have crashed.
I've added asserts in those cases.
At least one case was relying on GetAsMemoryData to return an error
when it was given nullptr. So I've hoisted that error setting code
out into the caller.
Depends on D134963
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D134965
This ensures it is run regardless of the method we use to initiate the
session (previous version did not handle connects), and it is the same
place that is used for resetting watchpoints.
Differential Revision: https://reviews.llvm.org/D134882
The synchronous callbacks are not intended to start the target running
during the callback, and doing so is flakey. This patch converts them
to being regular async callbacks, and adds some testing for sequential
reports that have caused problems in the field.
Differential Revision: https://reviews.llvm.org/D134927
Now that we display an error when users try to get variables, but something in the debug info is preventing variables from showing up, track this with a new bool in each module's statistic information named "debugInfoHadVariableErrors".
This patch modifies the code to track when we have variable errors in a module and adds accessors to get/set this value. This value is used in the module statistics and we added a test to verify this value gets set correctly.
Differential Revision: https://reviews.llvm.org/D134508
SectionLoadList has a section-to-address map (m_sect_to_addr) and
an address-to-section map (m_addr_to_sect). When the load address
of a section is updated, the old entry from m_addr_to_sect would
never be cleared, resulting in incorrect address-to-section address
lookups from that point forward.
Differential Revision: https://reviews.llvm.org/D130534
rdar://97308773
This patch adds auto source map deduce count as a target level statistics.
This will help telemetry to track how many debug sessions benefit from this feature.
Differential Revision: https://reviews.llvm.org/D134483
This patch adds a new "target.auto-source-map-relative" setting.
If enabled, this setting may auto deduce a source map entry based on requested
breakpoint path and the original path stored in debug info for resolved
breakpoint.
As an example, if debug info contains "./a/b/c/main.cpp", user sets a source
breakpoint at "/root/repo/x/y/z/a/b/c/main.cpp". The breakpoint will resolve
correctly now with Greg's patch https://reviews.llvm.org/D130401. However, the
resolved breakpoint will use "./a/b/c/main.cpp" to locate source file during
stop event which would fail most of the time.
With the new "target.auto-source-map-relative" setting enabled, a auto deduced
source map entry "." => "/root/repo/x/y/z" will be added. This new mapping will
help lldb to map resolved breakpoint path "./a/b/c/main.cpp" back to
"/root/repo/x/y/z/a/b/c/main.cpp" and locate it on disk.
If an existing source map entry is used the patch also concatenates the auto
deduced entry with any stripped reverse mapping prefix (see example below).
As a second example, debug info contains "./a/b/c/main.cpp" and user sets
breakpoint at "/root/repo/x/y/z/a/b/c/main.cpp". Let's say there is an existing
source map entry "." => "/root/repo"; this mapping would strip the prefix out of
"/root/repo/x/y/z/a/b/c/main.cpp" and use "x/y/z/a/b/c/main.cpp" to resolve
breakpoint. "target.auto-source-map-relative" setting would auto deduce a new
potential mapping of "." => "x/y/z", then it detects that there is a stripped
prefix from reverse mapping and concatenates it as the new mapping:
"." => "/root/repo/x/y/z" which would correct map "./a/b/c/main.cpp" path to
new path in disk.
This patches depends on https://reviews.llvm.org/D130401 to use new added
SBDebugger::GetSetting() API for testing.
Differential Revision: https://reviews.llvm.org/D133042
A common debugging pattern is to set a breakpoint that only stops after
a number of hits is recorded. The current implementation never resets
the hit count of breakpoints; as such, if a user re-`run`s their
program, the debugger will never stop on such a breakpoint again.
This behavior is arguably undesirable, as it renders such breakpoints
ineffective on all but the first run. This commit changes the
implementation of the `Will{Launch, Attach}` methods so that they reset
the _target's_ breakpoint hitcounts.
Differential Revision: https://reviews.llvm.org/D133858
Summary:
Many times when debugging variables might not be available even though a user can successfully set breakpoints and stops somewhere. Letting the user know will help users fix these kinds of issues and have a better debugging experience.
Examples of this include:
- enabling -gline-tables-only and being able to set file and line breakpoints and yet see no variables
- unable to open object file for DWARF in .o file debugging for darwin targets due to modification time mismatch or not being able to locate the N_OSO file.
This patch adds an new API to SBValueList:
lldb::SBError lldb::SBValueList::GetError();
object so that if you request a stack frame's variables using SBValueList SBFrame::GetVariables(...), you can get an error the describes why the variables were not available.
This patch adds the ability to get an error back when requesting variables from a lldb_private::StackFrame when calling GetVariableList.
It also now shows an error in response to "frame variable" if we have debug info and are unable to get varialbes due to an error as mentioned above:
(lldb) frame variable
error: "a.o" object from the "/tmp/libfoo.a" archive: either the .o file doesn't exist in the archive or the modification time (0x63111541) of the .o file doesn't match
Reviewers: labath JDevlieghere aadsm yinghuitan jdoerfert sscalpone
Subscribers:
Differential Revision: https://reviews.llvm.org/D133164
This patch adds new SBDebugger::GetSetting() API which
enables client to access settings as SBStructedData.
Implementation wise, a new ToJSON() virtual function is added to OptionValue
class so that each concrete child class can override and provides its
own JSON representation. This patch aims to define the APIs and implement
a common set of OptionValue child classes, leaving the remaining for
future patches.
This patch is used later by auto deduce source map from source line breakpoint
feature for testing generated source map entries.
Differential Revision: https://reviews.llvm.org/D133038
Many times when debugging variables might not be available even though a user can successfully set breakpoints and stops somewhere. Letting the user know will help users fix these kinds of issues and have a better debugging experience.
Examples of this include:
- enabling -gline-tables-only and being able to set file and line breakpoints and yet see no variables
- unable to open object file for DWARF in .o file debugging for darwin targets due to modification time mismatch or not being able to locate the N_OSO file.
This patch adds an new API to SBValueList:
lldb::SBError lldb::SBValueList::GetError();
object so that if you request a stack frame's variables using SBValueList SBFrame::GetVariables(...), you can get an error the describes why the variables were not available.
This patch adds the ability to get an error back when requesting variables from a lldb_private::StackFrame when calling GetVariableList.
It also now shows an error in response to "frame variable" if we have debug info and are unable to get varialbes due to an error as mentioned above:
(lldb) frame variable
error: "a.o" object from the "/tmp/libfoo.a" archive: either the .o file doesn't exist in the archive or the modification time (0x63111541) of the .o file doesn't match
Differential Revision: https://reviews.llvm.org/D133164
Complete support of the binary-addresses key in the qProcessInfo packet
in ProcessGDBRemote, for detecting if one of the binaries needs to be
handled by a Platform plugin, and can be used to set the Process'
DynamicLoader plugin and the Target's Platform plugin.
Implement this method in PlatformDarwinKernel to recognize a kernel
fileset at that address, find the actual kernel address in the
fileset, set DynamicLoaderDarwinKernel and PlatformDarwinKernel
in the Process/Target; register the kernel address with the dynamic
loader so it will be loaded later during attach.
This patch only addresses the live debug scenario with a gdb remote
serial protocol connection. I'll handle corefiles in a subsequent
patch that builds on this.
Differential Revision: https://reviews.llvm.org/D133534
rdar://98754861