For some reason the global variable reduction was trying to delete
use instructions. This broke the verifier if the user was a terminator,
since the block now no longer has one. It doesn't make sense for this
reduction to delete the users, so just stop doing that.
While "skip measurements mode" is super useful for test coverage,
i've come to discover it's trade-offs. It still calls back-end
to actually codegen the target assembly, and that is what is taking
80%+ of the time regardless of whether or not we skip the measurements.
On the other hand, just being able to see that exegesis can come up
with a snippet to measure something, is already very useful,
and takes maybe a second for a all-opcode sweep.
Reviewed By: gchatelet
Differential Revision: https://reviews.llvm.org/D140702
Use deduction guides instead of helper functions.
The only non-automatic changes have been:
1. ArrayRef(some_uint8_pointer, 0) needs to be changed into ArrayRef(some_uint8_pointer, (size_t)0) to avoid an ambiguous call with ArrayRef((uint8_t*), (uint8_t*))
2. CVSymbol sym(makeArrayRef(symStorage)); needed to be rewritten as CVSymbol sym{ArrayRef(symStorage)}; otherwise the compiler is confused and thinks we have a (bad) function prototype. There was a few similar situation across the codebase.
3. ADL doesn't seem to work the same for deduction-guides and functions, so at some point the llvm namespace must be explicitly stated.
4. The "reference mode" of makeArrayRef(ArrayRef<T> &) that acts as no-op is not supported (a constructor cannot achieve that).
Per reviewers' comment, some useless makeArrayRef have been removed in the process.
This is a follow-up to https://reviews.llvm.org/D140896 that introduced
the deduction guides.
Differential Revision: https://reviews.llvm.org/D140955
By default, all benchmark results are analysed, but sometimes it may be useful
to only look at those that to not involve memory, or vice versa. This option
allows to either keep all benchmarks, or filter out (ignore) either all the
ones that do involve memory (involve instructions that may read or write to
memory), or the opposite, to only keep such benchmarks.
Personally, so far i have found the benchmarks that do involve memory
to have dubious results. But the ones that do not involve memory,
are generally actionable. So i would like to have a toggle to declutter results.
Reviewed By: courbet
Differential Revision: https://reviews.llvm.org/D140734
Main thing I was unsure about was to whether try to delete the now
dead landing blocks, or leave that for the unreachable block reduction.
Personality function is not reduced, but that should be a separate
reduction on the function.
Fixes#58815
We required the test and input arguments for --print-delta-passes
which is unhelpful. Also, start printing the help output if no
arguments were supplied.
It looks like there's more sophisticated ways to accomplish this with
the opt library, but it was less work to manually emit these errors.
The verifier should fail if constrained intrinsics are used in
functions with strictfp, but that patch hasn't been pushed yet.
Ideally we would be able to analyze the function body to see if any
constrained intrinsics were used, but we seem to be missing a utility
function to check for any constrained ops.
The current reduction tries all or nothing elimination of named
metadata. I noticed in one case where one of the module flags was
necessary, but it left the rest. Reduce the individual operands of
named metadata nodes that are known to behave like lists. Be
conservative since some named metadata may have more specific verifier
requirements for the operands.
Fixes missing test coverage for the failed to execute case. However,
this test fails to verify the newline is printed. I can't figure out
how to get FileCheck to match the trailing newline.
This patch adds support for including binary ids in an indexed profile.
It adds a new field into the header that points to the offset of the
binary id section. The binary id section consists of a size of the
section, and a list of binary ids (if they are present) that consist
of two parts: length and data.
This patch guarantees that indexed profile is backwards compatible
after adding binary ids.
Differential Revision: https://reviews.llvm.org/D135929
Add file with Xtensa ELF relocations. Add Xtensa support to ELF.h,
ELFObject.h and ELFYAML.cpp. Add simple test of Xtensa ELF representation in YAML.
Differential Revision: https://reviews.llvm.org/D64827
Revert "Fix lldb option handling since e953ae5bbc (part 2)"
Revert "Fix lldb option handling since e953ae5bbc313fd0cc980ce021d487e5b5199ea4"
GCC build hangs on this bot https://lab.llvm.org/buildbot/#/builders/37/builds/19104
compiling CMakeFiles/obj.clangBasic.dir/Targets/AArch64.cpp.d
The bot uses GNU 11.3.0, but I can reproduce locally with gcc (Debian 12.2.0-3) 12.2.0.
This reverts commit caa713559b.
This reverts commit 06b90e2e9c.
This reverts commit e953ae5bbc.
These are going to waste a lot of time and produce clutter when we're
bulk introducing crashes. Add a flag to disable this behavior in case
this matters to a reproducer.
When trying to measure latency of certain opcodes, e.g.
`./bin/llvm-exegesis --opcode-name=BT32ri8 --mode=latency --repetition-mode=loop --benchmarks-file=- --max-configs-per-opcode=65536`,
we'd pick such an aliasing instruction, and such an aliasing registers,
that would alias with forbidden registers.
And in particular with loop counter in `loop` repetition mode,
which made the measurements never finish.
This does not address all such cases, only the most obvious one.
The added test case fails without the patch.
Fixes https://github.com/llvm/llvm-project/issues/59441
Target-extension types represent types that need to be preserved through
optimization, but otherwise are not introspectable by target-independent
optimizations. This patch doesn't add any uses of these types by an existing
backend, it only provides basic infrastructure such that these types would work
correctly.
Reviewed By: nikic, barannikov88
Differential Revision: https://reviews.llvm.org/D135202
This is a fairly large changeset, but it can be broken into a few
pieces:
- `llvm/Support/*TargetParser*` are all moved from the LLVM Support
component into a new LLVM Component called "TargetParser". This
potentially enables using tablegen to maintain this information, as
is shown in https://reviews.llvm.org/D137517. This cannot currently
be done, as llvm-tblgen relies on LLVM's Support component.
- This also moves two files from Support which use and depend on
information in the TargetParser:
- `llvm/Support/Host.{h,cpp}` which contains functions for inspecting
the current Host machine for info about it, primarily to support
getting the host triple, but also for `-mcpu=native` support in e.g.
Clang. This is fairly tightly intertwined with the information in
`X86TargetParser.h`, so keeping them in the same component makes
sense.
- `llvm/ADT/Triple.h` and `llvm/Support/Triple.cpp`, which contains
the target triple parser and representation. This is very intertwined
with the Arm target parser, because the arm architecture version
appears in canonical triples on arm platforms.
- I moved the relevant unittests to their own directory.
And so, we end up with a single component that has all the information
about the following, which to me seems like a unified component:
- Triples that LLVM Knows about
- Architecture names and CPUs that LLVM knows about
- CPU detection logic for LLVM
Given this, I have also moved `RISCVISAInfo.h` into this component, as
it seems to me to be part of that same set of functionality.
If you get link errors in your components after this patch, you likely
need to add TargetParser into LLVM_LINK_COMPONENTS in CMake.
Differential Revision: https://reviews.llvm.org/D137838
This change is rather more invasive than intended. The main intention
here is to make CommandLine.cpp not rely on llvm/Support/Host.h. Right
now, this reliance is only in 3 superficial places:
- Choosing how to expand response files (in two places)
- Printing the default triple and current CPU in `--version` output.
The built in version system has a method for adding "extra version
printers", commonly used by several tools (such as llc) to report the
registered targets in the built version of LLVM. It was reasonably easy
to move the logic for printing the default triple and current CPU into
a similar function, and register it with any relevant binaries.
The incompatible change here is that now, even if
LLVM_VERSION_PRINTER_SHOW_HOST_TARGET_INFO is defined, most binaries
will no longer print out the default target triple and cpu when provided
with `--version`, for instance llvm-as and llvm-dis. This breakage is
intended, but the changes in this patch keep printing the default target
and detected in `llc` and `opt` as these were remarked as important
binaries in the LLVM install.
The change to expanding response files may also be controversial, but I
believe that these macros should correspond exactly to the host triple
introspection used before.
Differential Revision: https://reviews.llvm.org/D137837
In some cases it's helpful to group trackers by JITDylib. E.g. Platform classes
may want to track initializer symbols with a `JITDylib -> Tracker -> [ Symbol ]`
map. This makes it easy to collect all symbols for the JITDylib, while still
allowing efficient removal of a single tracker. Passing the JITDylib as an
argument to ResourceManager::notifyRemovingResources and
ResourceManager::notifyTransferringResources supports such use-cases.