This patch removes the implementation of TypedAttr and ElementsAttr
from DenseArrayAttr and, in doing so, removes the need store a shaped
type. The attribute now stores a size (number of elements), an MLIR type
as a discriminator, and a raw byte array.
The intent of DenseArrayAttr was not to be a drop-in replacement for DenseElementsAttr. It was meant to be a simple container of integers or floats that map to C++ types. The ElementsAttr implementation on DenseArrayAttr had many holes in it, and fixing those holes would require evolving DenseArrayAttr in a way that is incompatible with its original purpose.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D137606
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
The KeyTy of attribute/type storage classes provide enough information for
automatically implementing the necessary sub element interface methods. This
removes the need for derived classes to do it themselves, which is both much
nicer and easier to handle certain invariants (e.g. null handling). In cases where
explicitly handling for parameter types is necessary, they can provide an implementation
of `AttrTypeSubElementHandler` to opt-in to support.
This tickles a few things alias wise, which annoyingly messes with tests that hard
code specific affine map numbers.
Differential Revision: https://reviews.llvm.org/D137374
Negative strides are useful for creating reverse-view of array. We don't have specific example for negative offset yet but will add it for consistency.
Differential Revision: https://reviews.llvm.org/D134147
Splat of bool is encoded as a byte with all-ones in it [1]. Without this
change, this piece of code:
auto xs = builder.getI32TensorAttr({42, 42, 42, 42});
auto xs2 = xs.mapValues(builder.getI1Type(), [](const llvm::APInt &x) {
return x.isZero() ? llvm::APInt::getZero(1) : llvm::APInt::getAllOnes(1);
});
xs2.dump();
Prints:
dense<[true, false, false, false]> : tensor<4xi1>
Because only the first bit is set. This applies to both
DenseIntElementsAttr::mapValues() and DenseFPElementsAttr::mapValues().
[1]: e877b42e2c/mlir/lib/IR/BuiltinAttributes.cpp (L984)
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D132767
This patch ensures that index integer attributes can only be
constructed with APInts whose widths are equal to the index
internal storage bitwidth (64).
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D133059
The previous implementation would still crash if the element type was
not iterable. This patch changes SparseElementsAttr to properly
implement `try_value_begin_impl` according to ElementsAttr and changes
DenseElementsAttr to implement `tryGetValues` as the basis for querying
element values.
Depends on D132904
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D132958
This patch changes `value_begin_impl` to a faillable
`try_value_begin_impl` so that specific cases can fail iteration if the
type doesn't match the internal storage.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D132904
This patch turns `DenseArrayBaseAttr` into a fully-functional attribute by
adding a generic parser and printer, supporting bool or integer and floating
point element types with bitwidths divisible by 8. It has been renamed
to `DenseArrayAttr`. The patch maintains the specialized subclasses,
e.g. `DenseI32ArrayAttr`, which remain the preferred API for accessing
elements in C++.
This allows `DenseArrayAttr` to hold signed and unsigned integer elements:
```
array<si8: -128, 127>
array<ui8: 255>
```
"Exotic" floating point elements:
```
array<bf16: 1.2, 3.4>
```
And integers of other bitwidths:
```
array<i24: 8388607>
```
Reviewed By: rriddle, lattner
Differential Revision: https://reviews.llvm.org/D132758
Introduce a new attribute to represent the strided memref layout. Strided
layouts are omnipresent in code generation flows and are the only kind of
layouts produced and supported by a half of operation in the memref dialect
(view-related, shape-related). However, they are internally represented as
affine maps that require a somewhat fragile extraction of the strides from the
linear form that also comes with an overhead. Furthermore, textual
representation of strided layouts as affine maps is difficult to read: compare
`affine_map<(d0, d1, d2)[s0, s1] -> (d0*32 + d1*s0 + s1 + d2)>` with
`strides: [32, ?, 1], offset: ?`. While a rudimentary support for parsing a
syntactically sugared version of the strided layout has existed in the codebase
for a long time, it does not go as far as this commit to make the strided
layout a first-class attribute in the IR.
This introduces the attribute and updates the tests that using the pre-existing
sugared form to use the new attribute instead. Most memref created
programmatically, e.g., in passes, still use the affine form with further
extraction of strides and will be updated separately.
Update and clean-up the memref type documentation that has gotten stale and has
been referring to the details of affine map composition that are long gone.
See https://discourse.llvm.org/t/rfc-materialize-strided-memref-layout-as-an-attribute/64211.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D132864
The element type enum is not needed to differentiate dense array kinds
because the element type of the shaped type can be used instead.
Reviewed By: mehdi_amini, rriddle
Differential Revision: https://reviews.llvm.org/D132535
This patch cleans up the definition of `DenseArrayAttrBase` by relying
more on ODS-generated methods. It also exposes an API for using the raw
data of a dense array, similar to `DenseIntOrFPElementsAttr::getRaw`.
Reviewed By: lattner, mehdi_amini
Differential Revision: https://reviews.llvm.org/D131450
This patch adds a DenseI1ArrayAttr to support arrays of i1. Importantly,
the implementation is as a simple `ArrayRef<bool>` instead of using bit
compression, which was problematic in DenseElementsAttr.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D130957
Previously, DenseArrayAttr used VectorType for its shaped type.
VectorType is problematic for arrays because it doesn't support zero
dimensions, meaning that an empty array would have `vector<i32>` as its
type. ElementsAttr would think that an empty dense array is size 1, not
0. This patch switches over to TensorType, which does support zero
dimensions.
Fixes#56860
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D130921
This attribute is technical debt from the early stages of MLIR, before
ElementsAttr was an interface and when it was more difficult for
dialects to define their own types of attributes. At present it isn't
used at all in tree (aside from being convenient for eliding other
ElementsAttr), and has had little to no evolution in the past three years.
Differential Revision: https://reviews.llvm.org/D129917
This attributes is intended cover the current set of use cases that abuse
DenseElementsAttr, e.g. when the data is large. Using resources for large
data is one of the major reasons why they were added; e.g. they can be
deallocated mid-compilation, they support a wide variety of data origins
(e.g, heap allocated, mmap'd, etc.), they can support mutation, etc.
I considered at length not having a builtin variant of this, and instead
having multiple versions of this attribute for dialects that are interested,
but they all boiled down to the exact same attribute definition. Given the
generality of this attribute, it feels more aligned to keep it next to DenseArrayAttr
(given that DenseArrayAttr covers the "small" case, and DenseResourcesElementsAttr
covers the "large" case). The underlying infra used to build this attribute is
general, and having a builtin attribute doesn't preclude users from defining
their own when it makes sense (they can even share a blob manager with the
builtin dialect to avoid data duplication).
Differential Revision: https://reviews.llvm.org/D130022
This patch removes the `type` field from `Attribute` along with the
`Attribute::getType` accessor.
Going forward, this means that attributes in MLIR will no longer have
types as a first-class concept. This patch lays the groundwork to
incrementally remove or refactor code that relies on generic attributes
being typed. The immediate impact will be on attributes that rely on
`Attribute` containing a type, such as `IntegerAttr`,
`DenseElementsAttr`, and `ml_program::ExternAttr`, which will now need
to define a type parameter on their storage classes. This will save
memory as all other attribute kinds will no longer contain a type.
Moreover, it will not be possible to generically query the type of an
attribute directly. This patch provides an attribute interface
`TypedAttr` that implements only one method, `getType`, which can be
used to generically query the types of attributes that implement the
interface. This interface can be used to retain the concept of a "typed
attribute". The ODS-generated accessor for a `type` parameter
automatically implements this method.
Next steps will be to refactor the assembly formats of certain operations
that rely on `parseAttribute(type)` and `printAttributeWithoutType` to
remove special handling of type elision until `type` can be removed from
the dialect parsing hook entirely; and incrementally remove uses of
`TypedAttr`.
Reviewed By: lattner, rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D130092
The current support was essentially the amount necessary
to support replacing SymbolRefAttrs, but suffers from various
deficiencies (both ergonomic and functional):
* Replace crashes if unsupported
This makes it really hard to use safely, given that you don't know
if you are going to crash or not when using it.
* Types aren't supported
This seems like a simple missed addition when the attribute replacement
support was originally added.
* The ergonomics are weird
It currently uses an index based replacement, which makes the implementations
quite clunky.
This commit refactors support to be a bit more ergonomic, and also
adds support for types in the process. This was also a great oppurtunity
to greatly simplify how replacement is done in the symbol table.
Fixes#56355
Differential Revision: https://reviews.llvm.org/D130589
This attribute is similar to DenseElementsAttr but does not support
splat. As such it has a much simpler API and does not need any smart
iterator: it exposes direct ArrayRef access.
A new syntax is introduced so that the generic printing/parsing looks
like:
[:i64 1, -2, 3]
This attribute beings like an ArrayAttr but has a `:` token after the
opening square brace to introduce the element type (supported are I8,
I16, I32, I64, F32, F64) and the comma separated list for the data.
This is particularly convenient for attributes intended to be small,
like those referring to shapes.
For example a `transpose` operation with a `dims` attribute could be
defined as such:
let arguments = (ins AnyTensor:$input, DenseI64ArrayAttr:$dims);
let assemblyFormat = "$input `dims` `=` $dims attr-dict : type($input)";
And printed this way (the element type is elided in this case):
transpose %input dims = [0, 2, 1] : tensor<2x3x4xf32>
The C++ API for dims would just directly return an ArrayRef<int64>
RFC: https://discourse.llvm.org/t/rfc-introduce-a-new-dense-array-attribute/63279
Recommit with a custom DenseArrayBaseAttrStorage class to ensure
over-alignment of the storage to the largest type.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D123774
This attribute is similar to DenseElementsAttr but does not support
splat. As such it has a much simpler API and does not need any smart
iterator: it exposes direct ArrayRef access.
A new syntax is introduced so that the generic printing/parsing looks
like:
[:i64 1, -2, 3]
This attribute beings like an ArrayAttr but has a `:` token after the
opening square brace to introduce the element type (supported are I8,
I16, I32, I64, F32, F64) and the comma separated list for the data.
This is particularly convenient for attributes intended to be small,
like those referring to shapes.
For example a `transpose` operation with a `dims` attribute could be
defined as such:
let arguments = (ins AnyTensor:$input, DenseI64ArrayAttr:$dims);
let assemblyFormat = "$input `dims` `=` $dims attr-dict : type($input)";
And printed this way (the element type is elided in this case):
transpose %input dims = [0, 2, 1] : tensor<2x3x4xf32>
The C++ API for dims would just directly return an ArrayRef<int64>
RFC: https://discourse.llvm.org/t/rfc-introduce-a-new-dense-array-attribute/63279
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D123774
When convertEndianOfCharForBEmachine is called with elementBitWidth
smaller than CHAR_BIT, the default case is invoked, but this does
nothing at all and leaves the output array unchanged.
Fix DenseIntOrFPElementsAttr::convertEndianOfArrayRefForBEmachine
by not calling convertEndianOfCharForBEmachine in this case, and
instead simply copying the input to the output (for sub-byte types,
endian conversion is in fact a no-op).
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D125676
Instead of requiring the client to compute the "isSplat" bit,
compute it internally. This makes the logic more consistent
and defines away a lot of "elements.size()==1" in the clients.
This addresses Issue #55185
Differential Revision: https://reviews.llvm.org/D125447
A large DenseElementsAttr of i1could trigger a bug in printer/parser roundtrip.
Ex. A DenseElementsAttr of i1 with 200 elements will print as Hex format of length 400 before the fix. However, when parsing the printed text, an error will be triggered. After fix, the printed length will be 50.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D122925
This matches the same API usage as attributes/ops/types. For example:
```c++
Dialect *dialect = ...;
// Instead of this:
if (auto *interface = dialect->getRegisteredInterface<DialectInlinerInterface>())
// You can do this:
if (auto *interface = dyn_cast<DialectInlinerInterface>(dialect))
```
Differential Revision: https://reviews.llvm.org/D117859
This reduce an unnecessary amount of copy of non-trivial objects, like
APFloat.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D116505
With VectorType supporting scalable dimensions, we don't need many of
the operations currently present in ArmSVE, like mask generation and
basic arithmetic instructions. Therefore, this patch also gets
rid of those.
Having built-in scalable vector support also simplifies the lowering of
scalable vector dialects down to LLVMIR.
Scalable dimensions are indicated with the scalable dimensions
between square brackets:
vector<[4]xf32>
Is a scalable vector of 4 single precission floating point elements.
More generally, a VectorType can have a set of fixed-length dimensions
followed by a set of scalable dimensions:
vector<2x[4x4]xf32>
Is a vector with 2 scalable 4x4 vectors of single precission floating
point elements.
The scale of the scalable dimensions can be obtained with the Vector
operation:
%vs = vector.vscale
This change is being discussed in the discourse RFC:
https://llvm.discourse.group/t/rfc-add-built-in-support-for-scalable-vector-types/4484
Differential Revision: https://reviews.llvm.org/D111819
The new form of printing attribute in the declarative assembly is eliding the `#dialect.mnemonic` prefix to only keep the `<....>` part.
Differential Revision: https://reviews.llvm.org/D113873
NamedAttribute is currently represented as an std::pair, but this
creates an extremely clunky .first/.second API. This commit
converts it to a class, with better accessors (getName/getValue)
and also opens the door for more convenient API in the future.
Differential Revision: https://reviews.llvm.org/D113956
mapped_iterator is a useful abstraction for applying a
map function over an existing iterator, but our current
usage ends up allocating storage/making indirect calls
even with the map function is a known function, which
is horribly inefficient. This commit refactors the usage
of mapped_iterator to avoid this, and allows for directly
referencing the map function when dereferencing.
Fixes PR52319
Differential Revision: https://reviews.llvm.org/D113511
Identifier and StringAttr essentially serve the same purpose, i.e. to hold a string value. Keeping these seemingly identical pieces of functionality separate has caused problems in certain situations:
* Identifier has nice accessors that StringAttr doesn't
* Identifier can't be used as an Attribute, meaning strings are often duplicated between Identifier/StringAttr (e.g. in PDL)
The only thing that Identifier has that StringAttr doesn't is support for caching a dialect that is referenced by the string (e.g. dialect.foo). This functionality is added to StringAttr, as this is useful for StringAttr in generally the same ways it was useful for Identifier.
Differential Revision: https://reviews.llvm.org/D113536
There are several aspects of the API that either aren't easy to use, or are
deceptively easy to do the wrong thing. The main change of this commit
is to remove all of the `getValue<T>`/`getFlatValue<T>` from ElementsAttr
and instead provide operator[] methods on the ranges returned by
`getValues<T>`. This provides a much more convenient API for the value
ranges. It also removes the easy-to-be-inefficient nature of
getValue/getFlatValue, which under the hood would construct a new range for
the type `T`. Constructing a range is not necessarily cheap in all cases, and
could lead to very poor performance if used within a loop; i.e. if you were to
naively write something like:
```
DenseElementsAttr attr = ...;
for (int i = 0; i < size; ++i) {
// We are internally rebuilding the APFloat value range on each iteration!!
APFloat it = attr.getFlatValue<APFloat>(i);
}
```
Differential Revision: https://reviews.llvm.org/D113229
- String binary search does 1 less string comparison
- Identifier linear scan on large attribute list is switched to string binary search
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D112970
This patch extends the SubElementAttr interface to allow replacing a contained sub attribute. The attribute that should be replaced is identified by an index which denotes the n-th element returned by the accompanying walkImmediateSubElements method.
Using this addition the patch implements replacing SymbolRefAttrs contained within any dialect attributes.
Differential Revision: https://reviews.llvm.org/D111357
This patch fixes:
mlir/lib/IR/BuiltinAttributes.cpp:876:39: error: unused function
'isComplexOfIntType' [-Werror,-Wunused-function]
in a release build.