This commit introduces branch weight attributes to the LLVM::CallOp and
LLVM::InvokeOp and adds both import and export of them.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D141122
This change introduces new LLVMIR dialect operations to represent
TBAA root, type descriptor and access tag metadata nodes.
For the purpose of importing TBAA metadata from LLVM IR it only
supports the current version of TBAA format described in
https://llvm.org/docs/LangRef.html#tbaa-metadata (i.e. size-aware
representation introduced in D41501 is not supported).
TBAA attribute support is only added for LLVM::LoadOp and LLVM::StoreOp.
Support for intrinsics operations (e.g. LLVM::MemcpyOp) may be added later.
The TBAA attribute is represented as an array of access tags, though,
LLVM IR supports only single access tag per memory accessing instruction.
I implemented it as an array anticipating similar support in LLVM IR
to combine TBAA graphs with different roots for Flang - one of the options
described in https://docs.google.com/document/d/16kKZVmI585wth01VSaJAqZMZpoX68rcdBmgfj0kNAt0/edit#heading=h.jzzheaz9vqac
It should be easy to restrict MLIR operation to a single access tag,
if we end up using a different approach for Flang.
Differential Revision: https://reviews.llvm.org/D140768
This commit introduces the function_entry_count metadata field to the
LLVMFuncOp and adds both the corresponding import and export
funtionalities.
The import of the function metadata uses the same infrastructure as the
instruction metadata, i.e., it dispatches through a dialect interface.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D141001
Return failure if the import of a global variable fails and add a
test case to check the emitted error message. Additionally, convert
the globals in iteration order and do not process them recursively
when translating a constant expression referencing it. Additionally,
use the module location rather unknown location.
Reviewed By: Dinistro
Differential Revision: https://reviews.llvm.org/D140966
This commit adds support for importing the magic globals "global_ctors"
and "global_dtors" from LLVM IR to the LLVM IR dialect. The import
fails when these globals have a non-null data pointer, as this can
currently not be represented in the corresponding MLIR operations.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D140877
This revision extends the LLVMImportDialectInterface to make the import
of LLVM IR instruction-level metadata extensible. It extends the
signature of the existing dialect interface to provide a method to
import specific metadata kinds and attach them to the imported
operation. The conversion function can rely on the ModuleImport class
to perform support tasks.
The revision implements the second part of the
"extensible llvm ir import" rfc:
https://discourse.llvm.org/t/rfc-extensible-llvm-ir-import/67256/6
The interface method names changed a bit compared to the suggested
design. The hook to set the instruction level metadata is now called
setMetadataAttrs and takes the metadata kind as an additional parameter.
We do not hand in the original LLVM IR instruction since it is not used
at this point. Importing named module-level meta data can be added in a
later stage after gaining some experience with this extension mechanism.
Depends on D140374
Reviewed By: ftynse, Dinistro
Differential Revision: https://reviews.llvm.org/D140556
1. When converting from the GPU dialect to the ROCDL dialect, if the
function that contains a gpu.thread_id or gpu.block_id op is annotated
with gpu.known_{block,grid}_size, use that size to set a "range"
attribute on the corresponding rocdl intrinsic so that the LLVM
frontend can optimize based on that range information.
1b. When translating from the rocdl dialect to LLVM IR, use the
"range" attribute, if present, to set !range metadata on the relevant
function call.
2. Deprecate the old rocdl.max_flat_work_group_size attribute, which
was used in a tensorflow backend. Instead, use
rocdl.flat_work_group_size going forward to allow kernel generators to
specify the minimum and maximum work group sizes a kernel may be
launched with in one attribute, thus more closely matching the backend.
3. When translating from gpu.func to llvm.func within gpu-to-rocdl,
copy the known_block_size attribute as rocdl.reqd_work_group_size to
enable further translations to set the corresponding metadata on the
LLVM IR function. Also, set the rocdl.flat_work_group_size attribute
to ensure that the reqd_work_group_size metadata and the
amdgpu-flat-work-group-size metadata are consistent.
3b. Extend the ROCDL to LLVM IR translation to set the
!reqd_work_group_size metadata on LLVM functions
Also update tests and add functions to the ROCDL dialect to ensure
attribute names are used consistently.
Depends on D139865
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D139866
The revision introduces the LLVMImportDialectInterface to make the
import of LLVM IR intrinsics extensible. It uses a dialect interface
that enables external projects to provide their own conversion functions
for custom intrinsics. These conversion functions can rely on the
ModuleImport class to perform support tasks such as mapping LLVM
values to MLIR values or for converting types between the two worlds.
The implementation largely mirrors the export implementation. One major
difference is the dispatch to the appropriate dialect interface, since
LLVM IR intrinsics have no direct association to an MLIR dialect. The
dialect interfaces thus have to publish the supported intrinsics to
ensure incoming conversion calls are dispatched to the right dialect
interface.
The revision implements the extensible intrinsic import discussed as
part of the "extensible llvm ir import" rfc:
https://discourse.llvm.org/t/rfc-extensible-llvm-ir-import/67256/6
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D140374
This is a fairly large changeset, but it can be broken into a few
pieces:
- `llvm/Support/*TargetParser*` are all moved from the LLVM Support
component into a new LLVM Component called "TargetParser". This
potentially enables using tablegen to maintain this information, as
is shown in https://reviews.llvm.org/D137517. This cannot currently
be done, as llvm-tblgen relies on LLVM's Support component.
- This also moves two files from Support which use and depend on
information in the TargetParser:
- `llvm/Support/Host.{h,cpp}` which contains functions for inspecting
the current Host machine for info about it, primarily to support
getting the host triple, but also for `-mcpu=native` support in e.g.
Clang. This is fairly tightly intertwined with the information in
`X86TargetParser.h`, so keeping them in the same component makes
sense.
- `llvm/ADT/Triple.h` and `llvm/Support/Triple.cpp`, which contains
the target triple parser and representation. This is very intertwined
with the Arm target parser, because the arm architecture version
appears in canonical triples on arm platforms.
- I moved the relevant unittests to their own directory.
And so, we end up with a single component that has all the information
about the following, which to me seems like a unified component:
- Triples that LLVM Knows about
- Architecture names and CPUs that LLVM knows about
- CPU detection logic for LLVM
Given this, I have also moved `RISCVISAInfo.h` into this component, as
it seems to me to be part of that same set of functionality.
If you get link errors in your components after this patch, you likely
need to add TargetParser into LLVM_LINK_COMPONENTS in CMake.
Differential Revision: https://reviews.llvm.org/D137838
The revision renames the Importer to ModuleImport and moves the class
out of the ConvertFromLLVMIR.cpp file into ModuleImport.h and
ModuleImport.cpp. Additionally, it introduces two helper methods
on the ModuleImport class that convert functions and globals, and it
merges the translateLLVMIRToModule function into the
registerFromLLVMIRTranslation function to match the design of
the MLIR to LLVM IR export.
This restructuring is a step towards the file structure of the export
and a preparation for an extensible import
https://discourse.llvm.org/t/rfc-extensible-llvm-ir-import/67256/6 that
uses a dialect interface to import intrinsics and metadata.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D140285
std::optional::value() has undesired exception checking semantics and is
unavailable in older Xcode (see _LIBCPP_AVAILABILITY_BAD_OPTIONAL_ACCESS). The
call sites block std::optional migration.
This is part of an effort to migrate from llvm::Optional to
std::optional. This patch changes the way mlir-tblgen generates .inc
files, and modifies tests and documentation appropriately. It is a "no
compromises" patch, and doesn't leave the user with an unpleasant mix of
llvm::Optional and std::optional.
A non-trivial change has been made to ControlFlowInterfaces to split one
constructor into two, relating to a build failure on Windows.
See also: https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Signed-off-by: Ramkumar Ramachandra <r@artagnon.com>
Differential Revision: https://reviews.llvm.org/D138934
value() has undesired exception checking semantics and calls
__throw_bad_optional_access in libc++. Moreover, the API is unavailable without
_LIBCPP_NO_EXCEPTIONS on older Mach-O platforms (see
_LIBCPP_AVAILABILITY_BAD_OPTIONAL_ACCESS).
This revision adds support to import fastmath flags from LLVMIR. It
implement the import using a listener attached to the builder. The
listener gets notified if an operation is created and then checks if
there are fastmath flags to import from LLVM IR to the MLIR. The
listener based approach allows us to perform the import without changing
the mlirBuilders used to create the imported operations.
An alternative solution, could be to update the builders so that they
return the created operation using FailureOr<Operation*> instead of
LogicalResult. However, this solution implies an LLVM IR instruction
always maps to exatly one MLIR operation. While mostly true, there are
already exceptions to this such as the PHI instruciton. Additionally, an
mlirBuilder based solution also further complicates the builder
implementations, which led to the listener based solution.
Depends on D139405
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D139620
The revision adds an inbounds attribute to the LLVM dialect
GEP operation. It extends the builders and the import and export
to support the optional inbounds attribute.
As all builders set inbounds to false by default, existing lowerings
from higher-level dialects to LLVM dialect are not affected by the
change. Canonicalization/folding remains untouched since it currently
does not implement any simplifications in case of undefined behavior
(the handling of undefined behavior is deferred to LLVM).
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D139821
The recently introduced iterative constant import
(https://reviews.llvm.org/D137559) fails for programs that
subsequently import constant expressions with duplicate
subexpressions. The reason is a broken duplicate check
in getConstantsToConvert. The revision fixes the bug and
adds a test case that imports two constant expressions
with duplicates.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D139918
Instead of exiting in the middle of the import handle errors more
gracefully by printing an error message and returning failure. The
revision handles and tests the import of unsupported instructions,
values, constants, and intrinsics.
Depends on D139404
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D139405
Modernize the import of LLVMIR instructions and global variables.
Use longer variable names, factor out code used to import call or
invoke instructions, use the CPP builders for importing branch
instructions, etc. The revision is a preparation for a follow up
revision that moves the import code to implement improved error
handling.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D139404
The attribute is translated into LLVM's function attribute 'readonly'. The attribute can be only used for pointers.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D139641
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Currently, the import of LLVMIR fails if the program contains debug
intrinsics. The revision adds support to import debug intrinsics that
have no debug expression attached and drops all debug intrinsics with a
non-empty debug expression. It also moves the existing debug intrinsics
into the "intr" namespace by deriving from LLVM_IntrOp.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D138405
Instead of importing constant expressions recursively, the revision
walks all dependencies of an LLVM constant iteratively. The actual
conversion then iterates over a list of constants and all intermediate
constant values are added to the value mapping. As a result, an LLVM IR
constant maps to exactly one MLIR operation per function. The revision
adapts the existing tests since the constant ordering changed for
aggregate types. Additionally, it adds extra tests that mix aggregate
constants and constant expressions.
Depends on D137416
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D137559
Add a DebugImporter to convert LLVMIR debug metadata into
MLIR debug attributes. It is the counterpart to the
DebugTranslation class and supports the same attributes.
The revision only supports the translation of instruction,
function, and module debug information. The import of
intrinsics is left to a later revision.
Depends on D138206
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D138209
The revision makes specific debug information attribute parameters
optional since some of them can be omitted in LLVMIR. The additional
flexibility enables a later revision that will support importing
debug information from LLVMIR. A special case is the types parameter
of the SubroutineTypeAttr. For void functions, its first entry is
null in LLVMIR. This revision splits the type parameter in an optional
resultType parameter and an argumentTypes array to support this corner
case.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D138206
Update the SPIRV `mlir-translate` translations to translate to/from
`spirv.module` instead of `builtin.module`. This simplifies the
translation since the code no longer needs to walk the module looking
for a SPIRV module, however it requires passing `-no-implicit-module` to
all the tests.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D135819
Insert constants and globals in order by maintaining the position
of the constant and global inserted last. Update the tests
to reflect the updated insertion order. Also make sure functions
are always inserted at the end of the module instead of at
the second last position and delete a spurious function in
the intrinsic.ll that seems to exist to avoid the first
function under test ends up at the end of the module.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D136679
So far the function argument attributes were only translated
for functions with bodies. This change makes sure that this
happens for functions without bodies (declarations) as well.
This is needed for https://github.com/llvm/llvm-project/issues/58579
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D137047
The call_intrinsic op allows us to call LLVM intrinsics from the LLVMDialect without implementing a new op every time.
Reviewed By: lattner, rriddle
Differential Revision: https://reviews.llvm.org/D137187
PTX programming models provides some performance tuning directives; see https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#performance-tuning-directives
The downstream compiler namely `ptxas` leverages these information for better register allocation or to handle other resource management that improves the performance.
This revision introduce all the kernel based directives to MLIR's NVVM dialect. The list is below
```
maxnreg -> max register per thread in CTA
maxntid -> max threads per CTA
reqntid -> exact number of threads per CTA
minnctapersm -> min CTA per SM
```
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D136931
This diff adds initial (partial) support for "fastmath" attributes for floating
point operations in the arithmetic dialect. The "fastmath" attributes are
implemented using a default-valued bit enum. The defined flags currently mirror
the fastmath flags in the LLVM dialect (and in LLVM itself). Extending the
set of flags (if necessary) is left as a future task.
In this diff:
- Definition of FastMathAttr as a custom attribute in the Arithmetic dialect
that inherits from the EnumAttr class.
- Definition of ArithFastMathInterface, which is an interface that is
implemented by operations that have an arith::fastmath attribute.
- Declaration of a default-valued fastmath attribute for unary and (some) binary
floating point operations in the Arithmetic dialect.
- Conversion code to lower arithmetic fastmath flags to LLVM fastmath flags
NOT in this diff (but planned or currently in progress):
- Documentation of flag meanings
- Addition of FastMathAttr attributes to other dialects that might lower to the
Arithmetic dialect (e.g. Math and Complex)
- Folding/rewrite implementations that are enabled by fastmath flags
- Specification of fastmath values from Python bindings (pending other in-
progress diffs)
Reviewed By: mehdi_amini, vzakhari
Differential Revision: https://reviews.llvm.org/D126305
This has been a long standing TODO, and actually enables users to generate
debug information for LLVM using the LLVM dialect; as opposed to our
dummy placeholder that generated just enough for line table information.
Differential Revision: https://reviews.llvm.org/D136543
This adds a '--no-implicit-module' option, which disables the insertion
of a top-level 'builtin.module' during parsing.
The translation APIs are also updated to take/return 'Operation*'
instead of 'ModuleOp', to allow other operation types to be used. To
simplify translations which are restricted to specific operation types,
'TranslateFromMLIRRegistration' has an overload which performs the
necessary cast and error checking.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D134237
Rename single letter member variables and function arguments to use
longer names in ConvertFromLLVMIR.cpp. Also drop some uses of auto in
favor our spelling out the type and refactor some llvm::enumerate loops.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D136246
The revision performs a topological sort of the blocks to
ensure the operations are processed in dominance order.
After the change, we do not need to introduce dummy
instructions if an operand has not yet been processed.
Additionally, the revision also moves and simplifies the
control-flow related tests to a separate test file.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D136230
Currently generation of align assumptions for OpenMP simd construct is done
outside OMPIRBuilder for C code and it is not supported for Fortran.
According to OpenMP 5.0 standard (2.9.3) only pointers and arrays can be
aligned for C code.
If given aligned variable is pointer, then Clang generates the following set
of the LLVM IR isntructions to support simd align clause:
; memory allocation for pointer address:
%A.addr = alloca ptr, align 8
; some LLVM IR code
; Alignment instructions (alignment is equal to 32):
%0 = load ptr, ptr %A.addr, align 8
call void @llvm.assume(i1 true) [ "align"(ptr %0, i64 32) ]
If given aligned variable is array, then Clang generates the following set
of the LLVM IR isntructions to support simd align clause:
; memory allocation for array:
%B = alloca [10 x i32], align 16
; some LLVM IR code
; Alignment instructions (alignment is equal to 32):
%arraydecay = getelementptr inbounds [10 x i32], ptr %B, i64 0, i64 0
call void @llvm.assume(i1 true) [ "align"(ptr %arraydecay, i64 32) ]
OMPIRBuilder was modified to generate aligned assumptions. It generates only
llvm.assume calls. Frontend is responsible for generation of aligned pointer
and getting the default alignment value if user does not specify it in aligned
clause.
Unit and regression tests were added to check if aligned clause was handled correctly.
Differential Revision: https://reviews.llvm.org/D133578
Reviewed By: jdoerfert
The revision adds support for importing the masked load/store and
gather/scatter intrinsics from LLVM IR. To enable the import, the
revision also includes an extension of the mlirBuilder code generation
to support variadic arguments.
Depends on D136057
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D136058
This allows for setting an attribute using the underlying C++ type,
which is generally much nicer to interact with than the attribute type.
Differential Revision: https://reviews.llvm.org/D135838
The revision imports the atomic operations using
tablegen generated builders. Additionally, it moves their tests to
the instructions.ll test file.
Depends on D135880
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D135944