Commit Graph

187 Commits

Author SHA1 Message Date
Matthias Springer
56d68e8d7a [mlir][bufferization] Add optional copy operand to AllocTensorOp
If `copy` is specified, the newly allocated buffer is initialized with the given contents. Also add an optional `escape` attribute to indicate whether the buffer of the tensor may be returned from the parent block (aka. "escape") after bufferization.

This change is in preparation of connecting One-Shot Bufferize to the sparse compiler.

Differential Revision: https://reviews.llvm.org/D126570
2022-06-09 21:37:15 +02:00
Alex Zinenko
5f0d4f208e [mlir] Introduce Transform ops for loops
Introduce transform ops for "for" loops, in particular for peeling, software
pipelining and unrolling, along with a couple of "IR navigation" ops. These ops
are intended to be generalized to different kinds of loops when possible and
therefore use the "loop" prefix. They currently live in the SCF dialect as
there is no clear place to put transform ops that may span across several
dialects, this decision is postponed until the ops actually need to handle
non-SCF loops.

Additionally refactor some common utilities for transform ops into trait or
interface methods, and change the loop pipelining to be a returning pattern.

Reviewed By: springerm

Differential Revision: https://reviews.llvm.org/D127300
2022-06-09 11:41:55 +02:00
dime10
4f55ed5a1e Add Python bindings for the OpaqueType
Implement the C-API and Python bindings for the builtin opaque type, which was previously missing.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D127303
2022-06-08 19:51:00 +02:00
Aart Bik
f8b692dd31 [mlir][python][f16] add ctype python binding support for f16
Similar to complex128/complex64, float16 has no direct support
in the ctypes implementation. This fixes the issue by using a
custom F16 type to change the view in and out of MLIR code

Reviewed By: wrengr

Differential Revision: https://reviews.llvm.org/D126928
2022-06-02 17:21:24 -07:00
Alex Zinenko
ce2e198bc2 [mlir] add decompose and generalize to structured transform ops
These ops complement the tiling/padding transformations by transforming
higher-level named structured operations such as depthwise convolutions into
lower-level and/or generic equivalents that are better handled by some
downstream transformations.

Differential Revision: https://reviews.llvm.org/D126698
2022-06-02 15:25:18 +02:00
Aart Bik
d668218946 [mlir][python][ctypes] fix ctype python binding complication for complex
There is no direct ctypes for MLIR's complex (and thus np.complex128
and np.complex64) yet, causing the mlir python binding methods for
memrefs to crash. This revision fixes this by passing complex arrays
as tuples of floats, correcting at the boundaries for the proper view.

NOTE: some of these changes (4 -> 2) were forced by the new "linting"

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D126422
2022-06-01 10:15:24 -07:00
Alex Zinenko
3f71765a71 [mlir] provide Python bindings for the Transform dialect
Python bindings for extensions of the Transform dialect are defined in separate
Python source files that can be imported on-demand, i.e., that are not imported
with the "main" transform dialect. This requires a minor addition to the
ODS-based bindings generator. This approach is consistent with the current
model for downstream projects that are expected to bundle MLIR Python bindings:
such projects can include their custom extensions into the bundle similarly to
how they include their dialects.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D126208
2022-05-30 17:37:52 +02:00
Matthias Springer
210c4e7fc8 [mlir][bufferization] Fix Python bindings
Differential Revision: https://reviews.llvm.org/D126179
2022-05-23 18:12:56 +02:00
Jeremy Furtek
9b79f50b59 [mlir][tblgen][ods][python] Use keyword-only arguments for optional builder arguments in generated Python bindings
This diff modifies `mlir-tblgen` to generate Python Operation class `__init__()`
functions that use Python keyword-only arguments.

Previously, all `__init__()` function arguments were positional. Python code to
create MLIR Operations was required to provide values for ALL builder arguments,
including optional arguments (attributes and operands). Callers that did not
provide, for example, an optional attribute would be forced to provide `None`
as an argument for EACH optional attribute. Proposed changes in this diff use
`tblgen` record information (as provided by ODS) to generate keyword arguments
for:
- optional operands
- optional attributes (which includes unit attributes)
- default-valued attributes

These `__init__()` function keyword arguments have default `None` values (i.e.
the argument form is `optionalAttr=None`), allowing callers to create Operations
more easily.

Note that since optional arguments become keyword-only arguments (since they are
placed after the bare `*` argument), this diff will require ALL optional
operands and attributes to be provided using explicit keyword syntax. This may,
in the short term, break any out-of-tree Python code that provided values via
positional arguments. However, in the long term, it seems that requiring
keywords for optional arguments will be more robust to operation changes that
add arguments.

Tests were modified to reflect the updated Operation builder calling convention.

This diff partially addresses the requests made in the github issue below.

https://github.com/llvm/llvm-project/issues/54932

Reviewed By: stellaraccident, mikeurbach

Differential Revision: https://reviews.llvm.org/D124717
2022-05-21 21:18:53 -07:00
Matthias Springer
ffdbecccaf [mlir][bufferization] Add bufferization.alloc_tensor op
This change adds a new op `alloc_tensor` to the bufferization dialect. During bufferization, this op is always lowered to a buffer allocation (unless it is "eliminated" by a pre-processing pass). It is useful to have such an op in tensor land, because it allows users to model tensor SSA use-def chains (which drive bufferization decisions) and because tensor SSA use-def chains can be analyzed by One-Shot Bufferize, while memref values cannot.

This change also replaces all uses of linalg.init_tensor in bufferization-related code with bufferization.alloc_tensor.

linalg.init_tensor and bufferization.alloc_tensor are similar, but the purpose of the former one is just to carry a shape. It does not indicate a memory allocation.

linalg.init_tensor is not suitable for modelling SSA use-def chains for bufferization purposes, because linalg.init_tensor is marked as not having side effects (in contrast to alloc_tensor). As such, it is legal to move linalg.init_tensor ops around/CSE them/etc. This is not desirable for alloc_tensor; it represents an explicit buffer allocation while still in tensor land and such allocations should not suddenly disappear or get moved around when running the canonicalizer/CSE/etc.

BEGIN_PUBLIC
No public commit message needed for presubmit.
END_PUBLIC

Differential Revision: https://reviews.llvm.org/D126003
2022-05-21 02:47:32 +02:00
Stella Laurenzo
8b7e85f4f8 [mlir][python] Add Python bindings for ml_program dialect.
Differential Revision: https://reviews.llvm.org/D125852
2022-05-18 23:08:33 -07:00
River Riddle
1bd1edaf40 [mlir:ODS] Support using attributes in AllTypesMatch to automatically add InferTypeOpInterface
This allows for using attribute types in result type inference for use with
InferTypeOpInterface. This was a TODO before, but it isn't much
additional work to properly support this. After this commit,
arith::ConstantOp can now have its InferTypeOpInterface implementation automatically
generated.

Differential Revision: https://reviews.llvm.org/D124580
2022-04-28 12:57:59 -07:00
Vivek Khandelwal
b20719dc7d [mlir][Linalg] Add pooling_nchw_sum op.
This commit adds pooling_nchw_sum as a yaml op.

Reviewed By: cathyzhyi, gysit

Differential Revision: https://reviews.llvm.org/D123013
2022-04-08 17:57:47 +05:30
Alex Zinenko
3a4ada6991 Revert "Added an empty __init__.py file to the MLIR Python bindings"
This reverts commit b50893db52.

Post-commit review pointed out that adding this file will require the
entire Python tree (including out-of-tree projects) to come from the
same directory, which might be problematic in non-default installations.
Reverting pending further discussion.
2022-03-31 20:03:52 +02:00
Sergei Lebedev
e1fdd8048c Fixed the type of context in type stubs for MLIR Python bindings
Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D122795
2022-03-31 14:28:10 +02:00
Sergei Lebedev
b50893db52 Added an empty __init__.py file to the MLIR Python bindings
While not strictly required after PEP-420, it is better to have one, since not
all tooling supports implicit namespace packages.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D122794
2022-03-31 11:57:31 +02:00
Sergei Lebedev
65b2f24c50 Fixed mypy type errors in MLIR Python type stubs
This commit fixes or disables all errors reported by

    python3 -m mypy -p mlir --show-error-codes

Note that unhashable types cannot be currently expressed in a way compatible
with typeshed. See https://github.com/python/typeshed/issues/6243 for details.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D122790
2022-03-31 11:56:26 +02:00
Sergei Lebedev
5177676261 Updated MLIR type stubs to work with pytype
The diff is big, but there are in fact only three kinds of changes

* ir.py had a synax error -- underminated [
* forward references are unnecessary in .pyi files (see 9a76b13127/CONTRIBUTING.md (L450-L454))
* methods defined via .def_static() are now decorated with @staticmethod

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D122300
2022-03-25 13:38:49 +01:00
River Riddle
9595f3568a [mlir:PDL] Remove the ConstantParams support from native Constraints/Rewrites
This support has never really worked well, and is incredibly clunky to
use (it effectively creates two argument APIs), and clunky to generate (it isn't
clear how we should actually expose this from PDL frontends). Treating these
as just attribute arguments is much much cleaner in every aspect of the stack.
If we need to optimize lots of constant parameters, it would be better to
investigate internal representation optimizations (e.g. batch attribute creation),
that do not affect the user (we want a clean external API).

Differential Revision: https://reviews.llvm.org/D121569
2022-03-19 13:28:24 -07:00
River Riddle
4a3460a791 [mlir:FunctionOpInterface] Rename the "type" attribute to "function_type"
This removes any potential confusion with the `getType` accessors
which correspond to SSA results of an operation, and makes it
clear what the intent is (i.e. to represent the type of the function).

Differential Revision: https://reviews.llvm.org/D121762
2022-03-16 17:07:04 -07:00
River Riddle
3655069234 [mlir] Move the Builtin FuncOp to the Func dialect
This commit moves FuncOp out of the builtin dialect, and into the Func
dialect. This move has been planned in some capacity from the moment
we made FuncOp an operation (years ago). This commit handles the
functional aspects of the move, but various aspects are left untouched
to ease migration: func::FuncOp is re-exported into mlir to reduce
the actual API churn, the assembly format still accepts the unqualified
`func`. These temporary measures will remain for a little while to
simplify migration before being removed.

Differential Revision: https://reviews.llvm.org/D121266
2022-03-16 17:07:03 -07:00
Stella Laurenzo
0c3156bd43 NFC: Remove unterminated string from Python pyi file. 2022-03-14 14:10:38 -07:00
gysit
7294be2b8e [mlir][linalg] Replace linalg.fill by OpDSL variant.
The revision removes the linalg.fill operation and renames the OpDSL generated linalg.fill_tensor operation to replace it. After the change, all named structured operations are defined via OpDSL and there are no handwritten operations left.

A side-effect of the change is that the pretty printed form changes from:
```
%1 = linalg.fill(%cst, %0) : f32, tensor<?x?xf32> -> tensor<?x?xf32>
```
changes to
```
%1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<?x?xf32>) -> tensor<?x?xf32>
```
Additionally, the builder signature now takes input and output value ranges as it is the case for all other OpDSL operations:
```
rewriter.create<linalg::FillOp>(loc, val, output)
```
changes to
```
rewriter.create<linalg::FillOp>(loc, ValueRange{val}, ValueRange{output})
```
All other changes remain minimal. In particular, the canonicalization patterns are the same and the `value()`, `output()`, and `result()` methods are now implemented by the FillOpInterface.

Depends On D120726

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D120728
2022-03-14 10:51:08 +00:00
chhzh123
036088fd6e [MLIR][Python] Add SCFIfOp Python binding
Current generated Python binding for the SCF dialect does not allow
users to call IfOp to create if-else branches on their own.
This PR sets up the default binding generation for scf.if operation
to address this problem.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D121076
2022-03-13 05:24:10 +00:00
Bixia Zheng
13d3307176 [mlir][linalg] Add a few unary operations.
Add operations abs, ceil, floor, and neg to the C++ API and Python API.

Add test cases.

Reviewed By: gysit

Differential Revision: https://reviews.llvm.org/D121339
2022-03-10 09:38:58 -08:00
Nicolas Vasilache
eb6a3c0c0c [mlir][Linalg] Add a polymorphic linalg.copy operation
With the recent improvements to OpDSL it is cheap to reintroduce a linalg.copy operation.

This operation is needed in at least 2 cases:
  1. for copies that may want to change the elemental type (e.g. cast, truncate, quantize, etc)
  2. to specify new tensors that should bufferize to a copy operation. The linalg.generic form
     always folds away which is not always the right call.

Differential Revision: https://reviews.llvm.org/D121230
2022-03-08 12:52:51 -05:00
gysit
f345f7e30b [mlir][OpDSL] Support pointwise ops with rank zero inputs.
Allow pointwise operations to take rank zero input tensors similarly to scalar inputs. Use an empty indexing map to broadcast rank zero tensors to the iteration domain of the operation.

Depends On D120734

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D120807
2022-03-08 17:39:47 +00:00
gysit
3231b6d3a2 [mlir][OpDSL] Remove unused SoftPlus2DOp operation.
The revision removes the SoftPlus2DOp operation that previously served as a test operation. It has been replaced by the elemwise_unary operation, which is now used to test unary log and exp functions.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D120794
2022-03-08 17:25:29 +00:00
gysit
f4939d5618 [mlir][OpDSL] Simplify index and constant tests.
Simplify tests that use `linalg.fill_rng_2d` to focus on testing the `const` and `index` functions. Additionally, cleanup emit_misc.py to use simpler test functions and fix an error message in config.py.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D120734
2022-03-08 17:11:03 +00:00
gysit
d629645fcd [mlir][OpDSL] Add support for adding canonicalization patterns.
Extend OpDSL with a `defines` method that can set the `hasCanonicalizer` flag for an OpDSL operation. If the flag is set via `defines(Canonicalizer)` the operation needs to implement the `getCanonicalizationPatterns` method. The revision specifies the flag for linalg.fill_tensor and adds an empty `FillTensorOp::getCanonicalizationPatterns` implementation.

This revision is a preparation step to replace linalg.fill by its OpDSL counterpart linalg.fill_tensor. The two are only functionally equivalent if both specify the same canonicalization patterns. The revision is thus a prerequisite for the linalg.fill replacement.

Depends On D120725

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D120726
2022-03-08 15:56:59 +00:00
gysit
f4ae02afe7 [mlir][linalg] Add a FillOpInterface.
Add a FillOpInterface similar to the contraction and convolution op interfaces. The FillOpInterface is a preparation step to replace linalg.fill by its OpDSL version linalg.fill_tensor. The interface implements the `value()`, `output()`, and `result()` methods that by default are not available on linalg.fill_tensor.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D120725
2022-03-08 15:48:02 +00:00
River Riddle
23aa5a7446 [mlir] Rename the Standard dialect to the Func dialect
The last remaining operations in the standard dialect all revolve around
FuncOp/function related constructs. This patch simply handles the initial
renaming (which by itself is already huge), but there are a large number
of cleanups unlocked/necessary afterwards:

* Removing a bunch of unnecessary dependencies on Func
* Cleaning up the From/ToStandard conversion passes
* Preparing for the move of FuncOp to the Func dialect

See the discussion at https://discourse.llvm.org/t/standard-dialect-the-final-chapter/6061

Differential Revision: https://reviews.llvm.org/D120624
2022-03-01 12:10:04 -08:00
gysit
e9085d0d25 [mlir][OpDSL] Rename function to make signedness explicit (NFC).
The revision renames the following OpDSL functions:
```
TypeFn.cast -> TypeFn.cast_signed
BinaryFn.min -> BinaryFn.min_signed
BinaryFn.max -> BinaryFn.max_signed
```
The corresponding enum values on the C++ side are renamed accordingly:
```
#linalg.type_fn<cast> -> #linalg.type_fn<cast_signed>
#linalg.binary_fn<min> -> #linalg.binary_fn<min_signed>
#linalg.binary_fn<max> -> #linalg.binary_fn<max_signed>
```

Depends On D120110

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D120562
2022-03-01 08:15:53 +00:00
gysit
24357fec8d [mlir][OpDSL] Add arithmetic function attributes.
The revision extends OpDSL with unary and binary function attributes. A function attribute, makes the operations used in the body of a structured operation configurable. For example, a pooling operation may take an aggregation function attribute that specifies if the op shall implement a min or a max pooling. The goal of this revision is to define less and more flexible operations.

We may thus for example define an element wise op:
```
linalg.elem(lhs, rhs, outs=[out], op=BinaryFn.mul)
```
If the op argument is not set the default operation is used.

Depends On D120109

Reviewed By: nicolasvasilache, aartbik

Differential Revision: https://reviews.llvm.org/D120110
2022-03-01 07:45:47 +00:00
gysit
cd2776b0d5 [mlir][OpDSL] Split arithmetic functions.
Split arithmetic function into unary and binary functions. The revision prepares the introduction of unary and binary function attributes that work similar to type function attributes.

Depends On D120108

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D120109
2022-02-25 15:27:42 +00:00
gysit
4d4cb17da8 [mlir][OpDSL] Refactor function handling.
Prepare the OpDSL function handling to introduce more function classes. A follow up commit will split ArithFn into UnaryFn and BinaryFn. This revision prepares the split by adding a function kind enum to handle different function types using a single class on the various levels of the stack (for example, there is now one TensorFn and one ScalarFn).

Depends On D119718

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D120108
2022-02-25 15:05:32 +00:00
gysit
51fdd802c7 [mlir][OpDSL] Add type function attributes.
Previously, OpDSL operation used hardcoded type conversion operations (cast or cast_unsigned). Supporting signed and unsigned casts thus meant implementing two different operations. Type function attributes allow us to define a single operation that has a cast type function attribute which at operation instantiation time may be set to cast or cast_unsigned. We may for example, defina a matmul operation with a cast argument:

```
@linalg_structured_op
def matmul(A=TensorDef(T1, S.M, S.K), B=TensorDef(T2, S.K, S.N), C=TensorDef(U, S.M, S.N, output=True),
    cast=TypeFnAttrDef(default=TypeFn.cast)):
  C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
```

When instantiating the operation the attribute may be set to the desired cast function:

```
linalg.matmul(lhs, rhs, outs=[out], cast=TypeFn.cast_unsigned)
```

The revsion introduces a enum in the Linalg dialect that maps one-by-one to the type functions defined by OpDSL.

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D119718
2022-02-25 08:25:23 +00:00
gysit
4121090893 [mlir][OpDSL] Restructure comprehension.py (NFC).
Group and reorder the classed defined by comprehension.py and add type annotations.

Depends On D119126

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D119692
2022-02-14 12:56:01 +00:00
gysit
d50571ab07 [mlir][OpDSL] Add default value to index attributes.
Index attributes had no default value, which means the attribute values had to be set on the operation. This revision adds a default parameter to `IndexAttrDef`. After the change, every index attribute has to define a default value. For example, we may define the following strides attribute:
```

```
When using the operation the default stride is used if the strides attribute is not set. The mechanism is implemented using `DefaultValuedAttr`.

Additionally, the revision uses the naming index attribute instead of attribute more consistently, which is a preparation for follow up revisions that will introduce function attributes.

Depends On D119125

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D119126
2022-02-14 12:14:12 +00:00
gysit
01e04867e8 [mlir][OpDSL] Consistently use the term op_def (NFC).
... and remove unused type aliases.

Depends On D119003

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D119125
2022-02-14 11:19:53 +00:00
gysit
a3655de2c8 [mlir][OpDSL] Add support for basic rank polymorphism.
Previously, OpDSL did not support rank polymorphism, which required a separate implementation of linalg.fill. This revision extends OpDSL to support rank polymorphism for a limited class of operations that access only scalars and tensors of rank zero. At operation instantiation time, it scales these scalar computations to multi-dimensional pointwise computations by replacing the empty indexing maps with identity index maps. The revision does not change the DSL itself, instead it adapts the Python emitter and the YAML generator to generate different indexing maps and and iterators depending on the rank of the first output.

Additionally, the revision introduces a `linalg.fill_tensor` operation that in a future revision shall replace the current handwritten `linalg.fill` operation. `linalg.fill_tensor` is thus only temporarily available and will be renamed to `linalg.fill`.

Reviewed By: nicolasvasilache, stellaraccident

Differential Revision: https://reviews.llvm.org/D119003
2022-02-11 08:27:49 +00:00
Stella Laurenzo
fe23a6fb75 [mlir] Fixup python bindings after splitting cf ops from std. 2022-02-06 14:51:17 -08:00
Matthias Springer
99ef9eebad [mlir][vector][NFC] Split into IR, Transforms and Utils
This reduces the dependencies of the MLIRVector target and makes the dialect consistent with other dialects.

Differential Revision: https://reviews.llvm.org/D118533
2022-01-31 19:17:09 +09:00
Denys Shabalin
2d9ed1aba2 [mlir] Fix broken __repr__ implementation in Linalg OpDSL
Reviewed By: gysit

Differential Revision: https://reviews.llvm.org/D118027
2022-01-24 15:58:35 +01:00
Bixia Zheng
b7fd91c84b Upstream MLIR PyTACO implementation.
Add TACO tests to test/Integration/Dialect/SparseTensor/taco. Add the MLIR
PyTACO implementation as tools under the directory.

Reviewed By: aartbik, mehdi_amini

Differential Revision: https://reviews.llvm.org/D117260
2022-01-21 08:38:36 -08:00
Alex Zinenko
89a92fb3ba [mlir] Rework subclass construction in PybindAdaptors.h
The constructor function was being defined without indicating its "__init__"
name, which made it interpret it as a regular fuction rather than a
constructor. When overload resolution failed, Pybind would attempt to print the
arguments actually passed to the function, including "self", which is not
initialized since the constructor couldn't be called. This would result in
"__repr__" being called with "self" referencing an uninitialized MLIR C API
object, which in turn would cause undefined behavior when attempting to print
in C++. Even if the correct name is provided, the mechanism used by
PybindAdaptors.h to bind constructors directly as "__init__" functions taking
"self" is deprecated by Pybind. The new mechanism does not seem to have access
to a fully-constructed "self" object (i.e., the constructor in C++ takes a
`pybind11::detail::value_and_holder` that cannot be forwarded back to Python).

Instead, redefine "__new__" to perform the required checks (there are no
additional initialization needed for attributes and types as they are all
wrappers around a C++ pointer). "__new__" can call its equivalent on a
superclass without needing "self".

Bump pybind11 dependency to 3.8.0, which is the first version that allows one
to redefine "__new__".

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D117646
2022-01-19 18:09:05 +01:00
Denys Shabalin
19c3026891 [mlir] Fix PDL python bindings build
Fixes incorrect build definition for the bindings for the PDL dialect.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D117657
2022-01-19 13:58:55 +01:00
Denys Shabalin
ed21c9276a [mlir] Introduce Python bindings for the PDL dialect
This change adds full python bindings for PDL, including types and operations
with additional mixins to make operation construction more similar to the PDL
syntax.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D117458
2022-01-19 11:19:56 +01:00
Mehdi Amini
772f7b87f8 Disable the MLIR ExecutionEngine library when the native target is not configured
The execution engine would not be functional anyway, we're already
disabling the tests, this also disable the rest of the code.

Anecdotally this reduces the number of static library built when the
builtin target is disabled goes from 236 to 218.

Here is the complete list of LLVM targets built when running
`ninja check-mlir`:

libLLVMAggressiveInstCombine.a
libLLVMAnalysis.a
libLLVMAsmParser.a
libLLVMBinaryFormat.a
libLLVMBitReader.a
libLLVMBitstreamReader.a
libLLVMBitWriter.a
libLLVMCore.a
libLLVMDebugInfoCodeView.a
libLLVMDebugInfoDWARF.a
libLLVMDemangle.a
libLLVMFileCheck.a
libLLVMFrontendOpenMP.a
libLLVMInstCombine.a
libLLVMIRReader.a
libLLVMMC.a
libLLVMMCParser.a
libLLVMObject.a
libLLVMProfileData.a
libLLVMRemarks.a
libLLVMScalarOpts.a
libLLVMSupport.a
libLLVMTableGen.a
libLLVMTableGenGlobalISel.a
libLLVMTextAPI.a
libLLVMTransformUtils.a

Differential Revision: https://reviews.llvm.org/D117287
2022-01-15 19:36:27 +00:00
Lei Zhang
b22a93f4fb [mlir][linalg] Improve pooling op iterator order consistency
All named ops list iterators for accessing output first except
pooling ops. This commit made the pooling ops consistent with
the rest.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D115520
2022-01-11 17:49:22 +00:00