This adds a simple PyOpOperand based on MlirOpOperand, which can has
properties for the owner op and operation number.
This also adds a PyOpOperandIterator that defines methods for __iter__
and __next__ so PyOpOperands can be iterated over using the the
MlirOpOperand C API.
Finally, a uses psuedo-container is added to PyValue so the uses can
generically be iterated.
Depends on D139596
Reviewed By: stellaraccident, jdd
Differential Revision: https://reviews.llvm.org/D139597
This allows us to hash Blocks and use them in sets or parts of larger
hashable objects. The implementation is the same as other core IR
constructs: the C API object's pointer is hashed.
Differential Revision: https://reviews.llvm.org/D139599
This adds a `write_bytecode` method to the Operation class.
The method takes a file handle and writes the binary blob to it.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D133210
Previously, calling `Value.owner()` would C++ assert in debug builds if
`Value` was a block argument. Additionally, the behavior was just wrong
in release builds. This patch adds support for BlockArg Values.
This attribute is technical debt from the early stages of MLIR, before
ElementsAttr was an interface and when it was more difficult for
dialects to define their own types of attributes. At present it isn't
used at all in tree (aside from being convenient for eliding other
ElementsAttr), and has had little to no evolution in the past three years.
Differential Revision: https://reviews.llvm.org/D129917
Previously the elements of the notes tuple would be invalid objects when
accessed from a diagnostic handler, resulting in a segfault when used.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D129943
The type extraction helper function for block argument and op result
list objects was ignoring the slice entirely. So was the slice addition.
Both are caused by a misleading naming convention to implement slices
via CRTP. Make the convention more explicit and hide the helper
functions so users have harder time calling them directly.
Closes#56540.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D130271
This commit refactors the syntax of "ugly" attribute/type formats to not use
strings for wrapping. This means that moving forward attirbutes and type formats
will always need to be in some recognizable form, i.e. if they use incompatible
characters they will need to manually wrap those in a string, the framework will
no longer do it automatically.
This has the benefit of greatly simplifying how parsing attributes/types work, given
that we currently rely on some extremely complicated nested parser logic which is
quite problematic for a myriad of reasons; unecessary complexity(we create a nested
source manager/lexer/etc.), diagnostic locations can be off/wrong given string escaping,
etc.
Differential Revision: https://reviews.llvm.org/D118505
The useLocalScope printing flag has been passed around between pybind methods, but doesn't actually enable the corresponding printing flag.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D127907
Implement the C-API and Python bindings for the builtin opaque type, which was previously missing.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D127303
This was leftover from when the standard dialect was destroyed, and
when FuncOp moved to the func dialect. Now that these transitions
have settled a bit we can drop these.
Most updates were handled using a simple regex: replace `^( *)func` with `$1func.func`
Differential Revision: https://reviews.llvm.org/D124146
Introduce a method on PyMlirContext (and plumb it through to Python) to
invalidate all of the operations in the live operations map and clear
it. Since Python has no notion of private data, an end-developer could
reach into some 3rd party API which uses the MLIR Python API (that is
behaving correctly with regard to holding references) and grab a
reference to an MLIR Python Operation, preventing it from being
deconstructed out of the live operations map. This allows the API
developer to clear the map when it calls C++ code which could delete
operations, protecting itself from its users.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D123895
Adds `mlirBlockDetach` to the CAPI to remove a block from its parent
region. Use it in the Python bindings to implement
`Block.append_to(region)`.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D123165
This commit moves FuncOp out of the builtin dialect, and into the Func
dialect. This move has been planned in some capacity from the moment
we made FuncOp an operation (years ago). This commit handles the
functional aspects of the move, but various aspects are left untouched
to ease migration: func::FuncOp is re-exported into mlir to reduce
the actual API churn, the assembly format still accepts the unqualified
`func`. These temporary measures will remain for a little while to
simplify migration before being removed.
Differential Revision: https://reviews.llvm.org/D121266
The last remaining operations in the standard dialect all revolve around
FuncOp/function related constructs. This patch simply handles the initial
renaming (which by itself is already huge), but there are a large number
of cleanups unlocked/necessary afterwards:
* Removing a bunch of unnecessary dependencies on Func
* Cleaning up the From/ToStandard conversion passes
* Preparing for the move of FuncOp to the Func dialect
See the discussion at https://discourse.llvm.org/t/standard-dialect-the-final-chapter/6061
Differential Revision: https://reviews.llvm.org/D120624
Previously only accessing values for `index` and signless int types
would work; signed and unsigned ints would hit an assert in
`IntegerAttr::getInt`. This exposes `IntegerAttr::get{S,U}Int` to the C
API and calls the appropriate function from the python bindings.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D120194
* While annoying, this is the only way to get C++ exception handling out of the happy path for normal iteration.
* Implements sq_length and sq_item for the sequence protocol (used for iteration, including list() construction).
* Implements mp_subscript for general use (i.e. foo[1] and foo[1:1]).
* For constructing a `list(op.results)`, this reduces the time from ~4-5us to ~1.5us on my machine (give or take measurement overhead) and eliminates C++ exceptions, which is a worthy goal in itself.
* Compared to a baseline of similar construction of a three-integer list, which takes 450ns (might just be measuring function call overhead).
* See issue discussed on the pybind side: https://github.com/pybind/pybind11/issues/2842
Differential Revision: https://reviews.llvm.org/D119691
This extends dense attribute element access to support 8b and 16b ints.
Also extends the corresponding parts of the C api.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D117731
When the printer is requested to elide large constant, we emit an opaque
attribute instead. This patch fills the dialect name with
"elided_large_const" instead of "_" to remove some user confusion when
they later try to consume it.
Differential Revision: https://reviews.llvm.org/D117711
The leading space that is always printed at the beginning of regions is not consistent with other parts of the printing API. Moreover, this leading space can lead to undesirable assembly formats:
```
attr-dict-with-keyword $region
```
Prints as:
```
// Two spaces between `}` and `{`
attributes {foo} { ... }
```
Moreover, the leading space results in the odd generic op format:
```
"test.op"() ( {...}) : () -> ()
```
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D117411
If a fusedloc is created with a single location then no fusedloc
was previously created and single location returned instead. In the case
where there is a metadata associated with the location this results in
discarding the metadata. Instead only canonicalize where there is no
loss of information.
Differential Revision: https://reviews.llvm.org/D115605
I considered multiple approaches for this but settled on this one because I could make the lifetime management work in a reasonably easy way (others had issues with not being able to cast to a Python reference from a C++ constructor). We could stand to have more formatting helpers, but best to get the core mechanism in first.
Differential Revision: https://reviews.llvm.org/D116568
* set_symbol_name, get_symbol_name, set_visibility, get_visibility, replace_all_symbol_uses, walk_symbol_tables
* In integrations I've been doing, I've been reaching for all of these to do both general IR manipulation and module merging.
* I don't love the replace_all_symbol_uses underlying APIs since they necessitate SYMBOL_COUNT walks and have various sharp edges. I'm hoping that whatever emerges eventually for this can still retain this simple API as a one-shot.
Differential Revision: https://reviews.llvm.org/D114687
While working on an integration, I found a lot of inconsistencies on IR printing and verification. It turns out that we were:
* Only doing "soft fail" verification on IR printing of Operation, not of a Module.
* Failed verification was interacting badly with binary=True IR printing (causing a TypeError trying to pass an `str` to a `bytes` based handle).
* For systematic integrations, it is often desirable to control verification yourself so that you can explicitly handle errors.
This patch:
* Trues up the "soft fail" semantics by having `Module.__str__` delegate to `Operation.__str__` vs having a shortcut implementation.
* Fixes soft fail in the presence of binary=True (and adds an additional happy path test case to make sure the binary functionality works).
* Adds an `assume_verified` boolean flag to the `print`/`get_asm` methods which disables internal verification, presupposing that the caller has taken care of it.
It turns out that we had a number of tests which were generating illegal IR but it wasn't being caught because they were doing a print on the `Module` vs operation. All except two were trivially fixed:
* linalg/ops.py : Had two tests for direct constructing a Matmul incorrectly. Fixing them made them just like the next two tests so just deleted (no need to test the verifier only at this level).
* linalg/opdsl/emit_structured_generic.py : Hand coded conv and pooling tests appear to be using illegal shaped inputs/outputs, causing a verification failure. I just used the `assume_verified=` flag to restore the original behavior and left a TODO. Will get someone who owns that to fix it properly in a followup (would also be nice to break this file up into multiple test modules as it is hard to tell exactly what is failing).
Notes to downstreams:
* If, like some of our tests, you get verification failures after this patch, it is likely that your IR was always invalid and you will need to fix the root cause. To temporarily revert to prior (broken) behavior, replace calls like `print(module)` with `print(module.operation.get_asm(assume_verified=True))`.
Differential Revision: https://reviews.llvm.org/D114680
- Provide the operator overloads for constructing (semi-)affine expressions in
Python by combining existing expressions with constants.
- Make AffineExpr, AffineMap and IntegerSet hashable in Python.
- Expose the AffineExpr composition functionality.
Reviewed By: gysit, aoyal
Differential Revision: https://reviews.llvm.org/D113010
Symbol tables are a largely useful top-level IR construct, for example, they
make it easy to access functions in a module by name instead of traversing the
list of module's operations to find the corresponding function.
Depends On D112886
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D112821
Provide support for removing an operation from the block that contains it and
moving it back to detached state. This allows for the operation to be moved to
a different block, a common IR manipulation for, e.g., module merging.
Also fix a potential one-past-end iterator dereference in Operation::moveAfter
discovered in the process.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D112700
The current behavior is conveniently allowing to iterate on the regions of an operation
implicitly by exposing an operation as Iterable. However this is also error prone and
code that may intend to iterate on the results or the operands could end up "working"
apparently instead of throwing a runtime error.
The lack of static type checking in Python contributes to the ambiguity here, it seems
safer to not do this and require and explicit qualification to iterate (`op.results`, `op.regions`, ...).
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D111697
In several cases, operation result types can be unambiguously inferred from
operands and attributes at operation construction time. Stop requiring the user
to provide these types as arguments in the ODS-generated constructors in Python
bindings. In particular, handle the SameOperandAndResultTypes and
FirstAttrDerivedResultType traits as well as InferTypeOpInterface using the
recently added interface support. This is a significant usability improvement
for IR construction, similar to what C++ ODS provides.
Depends On D111656
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D111811
The change is based on the proposal from the following discussion:
https://llvm.discourse.group/t/rfc-memreftype-affine-maps-list-vs-single-item/3968
* Introduce `MemRefLayoutAttr` interface to get `AffineMap` from an `Attribute`
(`AffineMapAttr` implements this interface).
* Store layout as a single generic `MemRefLayoutAttr`.
This change removes the affine map composition feature and related API.
Actually, while the `MemRefType` itself supported it, almost none of the upstream
can work with more than 1 affine map in `MemRefType`.
The introduced `MemRefLayoutAttr` allows to re-implement this feature
in a more stable way - via separate attribute class.
Also the interface allows to use different layout representations rather than affine maps.
For example, the described "stride + offset" form, which is currently supported in ASM parser only,
can now be expressed as separate attribute.
Reviewed By: ftynse, bondhugula
Differential Revision: https://reviews.llvm.org/D111553
When writing the user-facing documentation, I noticed several inconsistencies
and asymmetries in the Python API we provide. Fix them by adding:
- the `owner` property to regions, similarly to blocks;
- the `isinstance` method to any class derived from `PyConcreteAttr`,
`PyConcreteValue` and `PyConreteAffineExpr`, similar to `PyConcreteType` to
enable `isa`-like calls without having to handle exceptions;
- a mechanism to create the first block in the region as we could only create
blocks relative to other blocks, with is impossible in an empty region.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D111556
This exposes creating a CallSiteLoc with a callee & list of frames for
callers. Follows the creation approach in C++ side where a list of
frames may be provided.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D111670
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797