This does a global rename from `flang-new` to `flang`. I also
removed/changed any TODOs that I found related to making this change.
---------
Co-authored-by: H. Vetinari <h.vetinari@gmx.com>
Co-authored-by: Andrzej Warzynski <andrzej.warzynski@arm.com>
… failure
Any flang module with a derived type definition implicitly depends on
flang/module/__fortran_type_info.f90. Make this dependency explicit so
that an unlucky build order doesn't cause a crash.
This generates `warning: REAL(KIND=16) is not an enabled type for this
target` if that type is used in a build not correctly configured to
support this type. Uses of `selected_real_kind(30)` return -1.
Relanding #102147 because the test errors turned out to be specific to a
downstream configuration.
Reverts llvm/llvm-project#102147
It seems some systems which should support F128 are wrongly detected as
not supporting.
This might be due to checking `LDBL_MANT_DIG` instead of
`__LDBL_MANT_DIG__`. I will investigate.
This generates `warning: REAL(KIND=16) is not an enabled type for this
target` if that type is used in a build not correctly configured to
support this type. Uses of `selected_real_kind(30)` return -1.
Moves definitions of the kind arrays into a Fortran MODULE to not only
emit the MOD file, but also compile that MODULE file into an object
file. This file is then linked into libFortranRuntime.so.
Eventually this workaround PR shoud be redone and a proper runtime build
should be setup that will then also compile Fortran MODULE files.
Fixes#89403
---------
Co-authored-by: Valentin Clement (バレンタイン クレメン) <clementval@gmail.com>
Co-authored-by: Michael Kruse <github@meinersbur.de>
Update the folder titles for targets in the monorepository that have not
seen taken care of for some time. These are the folders that targets are
organized in Visual Studio and XCode (`set_property(TARGET <target>
PROPERTY FOLDER "<title>")`) when using the respective CMake's IDE
generator.
* Ensure that every target is in a folder
* Use a folder hierarchy with each LLVM subproject as a top-level folder
* Use consistent folder names between subprojects
* When using target-creating functions from AddLLVM.cmake, automatically
deduce the folder. This reduces the number of
`set_property`/`set_target_property`, but are still necessary when
`add_custom_target`, `add_executable`, `add_library`, etc. are used. A
LLVM_SUBPROJECT_TITLE definition is used for that in each subproject's
root CMakeLists.txt.
This is a re-worked version of #91668. It adds the `cudadevice` module
and set the `device` attributes on its functions/subroutines so there is
no need for special case in semantic check.
`cudadevice` module is implicitly USE'd in `global`/`device` subprogram.
Some functions and subroutines are available in device context
(device/global). These functions have interfaces declared in the
`cudadevice` module.
This patch adds interfaces as `__cuda_device_builtins_<fctname>` in a
builtin module and they are USE'd rename in the `cudadevice` module. The
module is implicitly used in device/global subprograms.
The builtin module only contains procedures from section 3.6.4 for now.
It seems like the `flang-to-external-fc` tool is no longer needed,
because Flang is now a full compiler in its own right. After PR #85249
has landed, this tool will not be able to pick up the `.f18.mod` files.
The default CMake scripts had a copy operation to copy a compiled `.mod`
file to also be available with suffix `.f18.mod`. This seems no longer
needed. Also updated ModFiles.md to point to `-module-suffix`.
---------
Co-authored-by: Kiran Chandramohan <kiranchandramohan@gmail.com>
Address TODOs in the intrinsic module ISO_FORTRAN_ENV, and extend the
implementation of NUMERIC_STORAGE_SIZE so that the calculation of its
value is deferred until it is needed so that the effects of
-fdefault-integer-8 or -fdefault-real-8 are reflected. Emit a warning
when NUMERIC_STORAGE_SIZE is used from the module file and the default
integer and real sizes do not match.
Fixes https://github.com/llvm/llvm-project/issues/87476.
This PR changes the build system to use use the sources for the module
`omp_lib` and the `omp_lib.h` include file from the `openmp` runtime
project and not from a separate copy of these files. This will greatly
reduce potential for inconsistencies when adding features to the OpenMP
runtime implementation.
When the OpenMP subproject is not configured, this PR also disables the
corresponding LIT tests with a "REQUIRES" directive at the beginning of
the OpenMP test files.
---------
Co-authored-by: Valentin Clement (バレンタイン クレメン) <clementval@gmail.com>
Preliminary patch to change lowering/code generation to use
llvm::DataLayout information instead of generating "sizeof" GEP (see
https://github.com/llvm/llvm-project/issues/71507).
Fortran Semantic analysis needs to know about the target type size and
alignment to deal with common blocks, and intrinsics like
C_SIZEOF/TRANSFER. This information should be obtained from the
llvm::DataLayout so that it is consistent during the whole compilation
flow.
This change is changing flang-new and bbc drivers to:
1. Create the llvm::TargetMachine so that the data layout of the target
can be obtained before semantics.
2. Sharing bbc/flang-new set-up of the
SemanticConstext.targetCharateristics from the llvm::TargetMachine. For
now, the actual part that set-up the Fortran type size and alignment
from the llvm::DataLayout is left TODO so that this change is mostly an
NFC impacting the drivers.
3. Let the lowering bridge set-up the mlir::Module datalayout attributes
since it is doing it for the target attribute, and that allows the llvm
data layout information to be available during lowering.
For flang-new, the changes are code shuffling: the `llvm::TargetMachine`
instance is moved to `CompilerInvocation` class so that it can be used
to set-up the semantic contexts. `setMLIRDataLayout` is moved to
`flang/Optimizer/Support/DataLayout.h` (it will need to be used from
codegen pass for fir-opt target independent testing.)), and the code
setting-up semantics targetCharacteristics is moved to
`Tools/TargetSetup.h` so that it can be shared with bbc.
As a consequence, LLVM targets must be registered when running
semantics, and it is not possible to run semantics for a target that is
not registered with the -triple option (hence the power pc specific
modules can only be built if the PowerPC target is available.
This patch includes the a subset of MMA intrinsics that are included in
the mma intrinsic module:
mma_assemble_acc
mma_assemble_pair
mma_build_acc
mma_disassemble_acc
mma_disassemble_pair
Submit on behalf of Daniel Chen <cdchen@ca.ibm.com>
Differential Revision: https://reviews.llvm.org/D155725
This patch simply adds a cmake install line for omp_lib.h that was
previously missing, to put it alongisde omp_lib.mod so it can be found
by the driver.
The following PowerPC vector type syntax is added:
VECTOR ( element-type-spec )
where element-type-sec is integer-type-spec, real-type-sec or unsigned-type-spec.
Two opaque types (__VECTOR_PAIR and __VECTOR_QUAD) are also added.
A finite set of functionalities are implemented in order to support the new types:
1. declare objects
2. declare function result
3. declare type dummy arguments
4. intrinsic assignment between the new type objects (e.g. v1=v2)
5. reference functions that return the new types
Submit on behalf of @tislam @danielcchen
Authors: @tislam @danielcchen
Differential Revision: https://reviews.llvm.org/D150876
Several module files in .../llvm-project/flang/module check for the
existence of the macro "__x86_64__" to conditionally compile Fortran
code. Unfortunately, this macro was not being defined anywhere. This
patch fixes that for compilations targeting 64 bit x86 machines.
I made the following changes --
-- Removed the test for 32 bit X86 targets. The rest of the compiler and
runtime do not support X86 32 bits.
-- Added predefined macros to define "__x86_64__" and "__x86__64" to
be 1 when the target architecture is 64 bit x86 and the "-cpp" option
is on the command line.
-- Changed the cmake file for creating the Fortran module files to use the
"-cpp" option so that the macro "__x86_64__" will be defined when building
the module files.
-- Added a test.
Differential Revision: https://reviews.llvm.org/D135810
If CMAKE_CROSSCOMPILING, then the newly built flang-new executable was
cross compiled and thus can't be executed on the build system, and thus
can't be used for generating module files.
Differential Revision: https://reviews.llvm.org/D130349
This is a follow-up of https://reviews.llvm.org/D125832
(see also https://reviews.llvm.org/D125788 for more context). It simply
removes any remaining references to the `flang` bash script. Note that
that `flang-to-external-fc` remains intact.
This felt worthwhile mentioning in the release notes, which have not
been updated since LLVM 12 (we are approaching LLVM 15 now). I took the
liberty of removing all of the out-dated content and added a note about
the renaming.
Differential Revision: https://reviews.llvm.org/D127094
Our ultimate goal is to rename `flang-new` as `flang`. This is "Step 1"
in which we only rename the bash wrapper script, `flang`, as
`flang-to-external-fc`. The new name more accurately reflects what the
wrapper script does.
With this patch, `flang` becomes a symbolic link pointing to
`flang-to-external-fc`. This allows a smooth transmission for any
buildbots that use this script. Once the buildbots are reconfigured to
use the updated name, CMake rule for the symbolic link will be removed.
For more context see:
* https://discourse.llvm.org/t/rename-flang-new-as-flang,
* https://reviews.llvm.org/D125788.
Differential Revision: https://reviews.llvm.org/D125832
Any header or module file in the Flang source directory is of no use to
the compiler unless it is copied into the build directory. Indeed, all
compiler search paths are relative to the compiler executable (flang-new
in our case). Hence, "omp_lib.h" should be copied into the build
directory alongside other compiler-provided files that can be "included"
(header files) or "used" (module files).
For now, "omp_lib.h" is copied into "<build-dir>/include/flang/OpenMP".
We may decide to change this in future. For example, Clang copies a
bunch of runtime headers into “<build-dir>/lib/clang/<version-number>”.
We could also consider using a similar header from a different
sub-project.
Flang's driver search path is updated accordingly. A rule for
"installing" the "omp_lib.h" header is _yet to be added_ (we will also
need to determine the suitable location for this).
Differential Revision: https://reviews.llvm.org/D122015
The intrinsic module IEEE_ARITHMETIC must incorporate the public
names from the intrisic module IEEE_EXCEPTIONS. Rename IEEE_EXCEPTIONS
to __Fortran_ieee_exceptions so that it won't clash with the
nonintrinsic namespace, establish a new intrinic IEEE_EXCEPTIONS
module that USEs it, and add a USE to IEEE_ARITHMETIC.
Updated to use STREQUAL rather than ambiguous MATCHES in
the CMakeLists.txt file.
Differential Revision: https://reviews.llvm.org/D121490
The intrinsic module IEEE_ARITHMETIC must incorporate the public
names from the intrisic module IEEE_EXCEPTIONS. Rename IEEE_EXCEPTIONS
to __Fortran_ieee_exceptions so that it won't clash with the
nonintrinsic namespace, establish a new intrinic IEEE_EXCEPTIONS
module that USEs it, and add a USE to IEEE_ARITHMETIC.
Differential Revision: https://reviews.llvm.org/D121490
Extracted from D99484. My new plan is to start from the outside and work
inward.
Reviewed By: stephenneuendorffer
Differential Revision: https://reviews.llvm.org/D115569
Rearrange the contents of __builtin_* module files a little and
make sure that semantics implicitly USEs the module __Fortran_builtins
before processing each source file. This ensures that the special derived
types for TEAM_TYPE, EVENT_TYPE, LOCK_TYPE, &c. exist in the symbol table
where they will be available for use in coarray intrinsic function
processing.
Update IsTeamType() to exploit access to the __Fortran_builtins
module rather than applying ad hoc name tests. Move it and some
other utilities from Semantics/tools.* to Evaluate/tools.* to make
them available to intrinsics processing.
Add/correct the intrinsic table definitions for GET_TEAM, TEAM_NUMBER,
and THIS_IMAGE to exercise the built-in TEAM_TYPE as an argument and
as a result.
Add/correct/extend tests accordingly.
Differential Revision: https://reviews.llvm.org/D110356
This patch removes `f18`, a.k.a. the old driver. It is being replaced
with the new driver, `flang-new`, which has reached feature parity with
`f18` a while ago. This was discussed in [1] and also in [2].
With this change, `FLANG_BUILD_NEW_DRIVER` is no longer needed and is
also deleted. This means that we are making the dependency on Clang permanent
(i.e. it cannot be disabled with a CMake flag).
LIT set-up is updated accordingly. All references to `f18` or `f18.cpp`
are either updated or removed.
The `F18_FC` variable from the `flang` bash script is replaced with
`FLANG_FC`. The former is still supported for backwards compatibility.
[1] https://lists.llvm.org/pipermail/flang-dev/2021-June/000742.html
[2] https://reviews.llvm.org/D103177
Differential Revision: https://reviews.llvm.org/D105811
Until now, `f18` would:
1. Use Flang to unparse the input files
2. Call an external Fortran compiler to compile the unparsed source
files (generated in step 1)
With this patch, `f18` will stop after unparsing the input source files,
i.e. step 1 above. The `flang` bash script will take care of step 2,
i.e. calling an external Fortran compiler driver to compile them. This
way:
* the functionality of `f18` is reduced - it will only drive Flang (as
opposed to delegating code-generation to an external tool on top of
this)
* we will able to switch between `f18` and `flang-new` for unparsing before
an external Fortran compiler is called for code-generation
The updated `flang` bash script needs to specify the output file when
using the `-fdebug-unparse` action. Both `f18` and `flang-new` have been
updated accordingly.
These changes were discussed in [1] as a requirement for replacing `f18`
with `flang-new`.
[1] https://lists.llvm.org/pipermail/flang-dev/2021-April/000677.html
Differential Revision: https://reviews.llvm.org/D103177
The build was putting .mod files for intrinsic modules in
tools/flang/include/flang but the install puts them in include/flang,
as does the out-of-tree build. This confused things for the driver.
This change makes the build consistent with the install and simplifies
the flang script accordingly.
Also, clean up the cmake commands for building the .mod files.
Differential Revision: https://reviews.llvm.org/D98522
Now that semantics is working, the standard -fsyntax-only option of
GNU and Clang should be used as the name of the option that causes
f18 to just run the front-end. Support both options in f18, silently
accepting the old option as a synonym for the new one (as
preferred by the code owner), and replace all instances of the
old -fparse-only option with -fsyntax-only throughout the source base.
Differential Revision: https://reviews.llvm.org/D95887
Flang has two CMake configurable header files that define compiler
version numbers:
* f18_version.h.in - only used in f18.cpp (uses version numbers from
LLVM's macro definitions)
* Version.inc.in - not currently used (uses version numbers hard-coded
in Flang's top CMake script)
Currently only f18_version.h.in provides version numbers consistent with
other subprojects in llvm-project. However, its location and name are
inconsistent with e.g. Clang. This patch merges the two headers
together:
* hard-coded version numbers in Flang's top CMake script are deleted
* Version.inc.in is updated to provide string versions of version
numbers (required by f18.cpp)
* f18_version.h.in is deleted as it's no longer needed
Differential Revision: https://reviews.llvm.org/D94422
The flang wrapper script that was created as bin/flang in an in-tree
build did not have a correct -intrinsic-module-directory option.
It was correct for out-of-tree builds and for both kinds of installs.
The fix is to pick the correct directory based on what exists.
The script is no longer configured by cmake (just copied) so that
mechanism can be deleted from the cmake file.
Differential Revision: https://reviews.llvm.org/D93496
Define Fortran derived types that describe the characteristics
of derived types, and instantiations of parameterized derived
types, that are of relevance to the runtime language support
library. Define a suite of corresponding C++ structure types
for the runtime library to use to interpret instances of the
descriptions.
Create instances of these description types in Semantics as
static initializers for compiler-created objects in the scopes
that define or instantiate user derived types.
Delete obsolete code from earlier attempts to package runtime
type information.
Differential Revision: https://reviews.llvm.org/D92802
Under current configuration, the permission of `flang` after installation is 700.
This could bring a problem for system administrators who build and install flang
for other users, which only the user who builds LLVM can execute it, and others
can not. In this patch, the explicit permission setting in the `install` command
is removed, and let CMake determine what perssion to be used like other components.
Reviewed By: DavidTruby
Differential Revision: https://reviews.llvm.org/D87783
Fixed some version information in flang/f18:
- fixed the behavior of the -v switch: this flag enables verbosity with used with arguments, but just displays the version when used alone (related to this bug: https://bugs.llvm.org/show_bug.cgi?id=46017)
- added __FLANG, __FLANG_MAJOR__, __FLANG_MINOR__ and __FLANG_PATCHLEVEL__ (similar to their __F18* counterparts) for compatibility purpose
Reviewed By: AlexisPerry, richard.barton.arm, tskeith
Differential Revision: https://reviews.llvm.org/D84334