Since 44363f2 various tests have started passing but introduced a
expression evaluation failure in TestDataFormatterSynthVal.py.
This patch marks the expression evaluation part as skipped while rest
of the test passes.
This patch aslo introduces a new helper isAArch64Windows in lldbtest.py.
This patch fixes libstdc++ data formatter for reference/pointer to std::string.
The failure testcases are added which succeed with the patch.
Differential Revision: https://reviews.llvm.org/D150313
This patch add or removes XFAIL decorator from various tests which were marked
xfail for windows.
since 44363f2 various tests have started passing but introduced a couple of new failures.
Weight is in favor of new XPasses and I have removed XFail decorator from them. Also
some new tests have started failing for which we need to file separate bugs. I have
marked them xfail for now and will add the bug id after investigating the issue.
Differential Revision: https://reviews.llvm.org/D149235
The unique_ptr prettyprinter calls `GetValueOfLibCXXCompressedPair`,
which looks for a `__value_` child. However, when the second value in
the compressed pair is not an empty class, there are two `__value_`
children because `__compressed_pair` derives twice from
`__compressed_pair_elem`, one for each member of the pair. And then the
lookup fails because it's ambiguous.
This patch makes the following changes:
- Rename `GetValueOfLibCXXCompressedPair` to
`GetFirstValueOfLibCXXCompressedPair`, and add a similar function to
get the second value. Put both functions in
Plugin/Language/CPlusPlus/LibCxx.cpp because it seems inappropriate to
have libcxx-specific helpers separate from all the libcxx-dependent
code.
- Read the second value of the `__ptr_` pair and display a "deleter"
child in the unique_ptr synthetic child provider, when available.
- Add a test case for the non-empty deleter case.
Differential Revision: https://reviews.llvm.org/D148662
(Addresses GH#62153)
The `SBType` APIs to retrieve details about template arguments,
such as `GetTemplateArgumentType` or `GetTemplateArgumentKind`
don't "desugar" LValueReferences/RValueReferences or pointers.
So when we try to format a `std::deque&`, the python call to
`GetTemplateArgumentType` fails to get a type, leading to
an `element_size` of `0` and a division-by-zero python exception
(which gets caught by the summary provider silently). This leads
to the contents of such `std::deque&` to be printed incorrectly.
This patch dereferences the reference/pointer before calling
into the above SBAPIs.
**Testing**
* Add API test
Differential Revision: https://reviews.llvm.org/D148531
With this patch, whenever we emit a `DW_AT_type` for some declaration
and the type is a template class with a `clang::PreferredNameAttr`, we
will emit the typedef that the attribute refers to instead. I.e.,
```
0x123 DW_TAG_variable
DW_AT_name "var"
DW_AT_type (0x123 "basic_string<char>")
0x124 DW_TAG_structure_type
DW_AT_name "basic_string<char>"
```
...becomes
```
0x123 DW_TAG_variable
DW_AT_name "var"
DW_AT_type (0x124 "std::string")
0x124 DW_TAG_structure_type
DW_AT_name "basic_string<char>"
0x125 DW_TAG_typedef
DW_AT_name "std::string"
DW_AT_type (0x124 "basic_string<char>")
```
We do this by returning the preferred name typedef `DIType` when
we create a structure definition. In some cases, e.g., with `-gmodules`,
we don't complete the structure definition immediately but do so later
via `completeClassData`, which overwrites the `TypeCache`. In such cases
we don't actually want to rewrite the cache with the preferred name. We
handle this by returning both the definition and the preferred typedef
from `CreateTypeDefinition` and let the callee decide what to do with
it.
Essentially we set up the types as:
```
TypeCache[Record] => DICompositeType
ReplaceMap[Record] => DIDerivedType(baseType: DICompositeType)
```
For now we keep this behind LLDB tuning.
**Testing**
- Added clang unit-test
- `check-llvm`, `check-clang` pass
- Confirmed that this change correctly repoints
`basic_string` references in some of my test programs.
- Will add follow-up LLDB API tests
Differential Revision: https://reviews.llvm.org/D145803
With this patch member-function pointers are formatted using
`CXXFunctionPointerSummaryProvider`.
This turns,
```
(lldb) v pointer_to_member_func
(void (Foo::*)()) ::pointer_to_member_func = 0x00000000000000000000000100003f94
```
into
```
(lldb) v pointer_to_member_func
(void (Foo::*)()) ::pointer_to_member_func = 0x00000000000000000000000100003f94 (a.out`Foo::member_func() at main.cpp:3)
```
Differential Revision: https://reviews.llvm.org/D145242
Before this patch, LLDB used to format pointers to members, such as,
```
void (Foo::*pointer_to_member_func)() = &Foo::member_func;
```
as `eFormatBytes`. E.g.,
```
(lldb) v pointer_to_member_func
(void (Foo::*)()) $1 = 94 3f 00 00 01 00 00 00 00 00 00 00 00 00 00 00
```
This patch makes sure we format pointers to member functions the same
way we do regular function pointers.
After this patch we format member pointers as:
```
(lldb) v pointer_to_member_func
(void (Foo::*)()) ::pointer_to_member_func = 0x00000000000000000000000100003f94
```
Differential Revision: https://reviews.llvm.org/D145241
This patch adds a test for formatting of member function pointers.
This was split from https://reviews.llvm.org/D145242, which caused
this test case to fail on Windows buildbots.
I split this out in order to make sure that this indeed works on Windows
without the D145242 patch.
Differential Revision: https://reviews.llvm.org/D145487
With this patch member-function pointers are formatted using
`CXXFunctionPointerSummaryProvider`.
This turns,
```
(lldb) v pointer_to_member_func
(void (Foo::*)()) ::pointer_to_member_func = 0x00000000000000000000000100003f94
```
into
```
(lldb) v pointer_to_member_func
(void (Foo::*)()) ::pointer_to_member_func = 0x00000000000000000000000100003f94 (a.out`Foo::member_func() at main.cpp:3)
```
Differential Revision: https://reviews.llvm.org/D145242
Before this patch, LLDB used to format pointers to members, such as,
```
void (Foo::*pointer_to_member_func)() = &Foo::member_func;
```
as `eFormatBytes`. E.g.,
```
(lldb) v pointer_to_member_func
(void (Foo::*)()) $1 = 94 3f 00 00 01 00 00 00 00 00 00 00 00 00 00 00
```
This patch makes sure we format pointers to member functions the same
way we do regular function pointers.
After this patch we format member pointers as:
```
(lldb) v pointer_to_member_func
(void (Foo::*)()) ::pointer_to_member_func = 0x00000000000000000000000100003f94
```
Differential Revision: https://reviews.llvm.org/D145241
**Summary**
The compiler version check wouldn't make sense for non-GCC
compilers, so check for the compiler too.
Differential Revision: https://reviews.llvm.org/D143656
So far, the pretty printer for `std::coroutine_handle` internally
dereferenced the contained frame pointer displayed the `promise`
as a sub-value. As noticed in https://reviews.llvm.org/D132624
by @labath, this can lead to an endless loop in lldb during printing
if the coroutine frame pointers form a cycle.
This commit breaks the cycle by exposing the `promise` as a pointer
type instead of a value type. The depth to which the `frame variable`
and the `expression` commands dereference those pointers can be
controlled using the `--ptr-depth` argument.
Differential Revision: https://reviews.llvm.org/D132815
Set compiler_versions on these tests, as they fail if tested on lower compiler
versions versions.
Differential Revision: https://reviews.llvm.org/D142513
In API tests, replace use of the `p` alias with the `expression` command.
To avoid conflating tests of the alias with tests of the expression command,
this patch canonicalizes to the use `expression`.
Differential Revision: https://reviews.llvm.org/D141539
This data formatter should print "No Value" if a variant is unset. It does so by checking if `__index` has a value of `-1`, however it does so by interpreting it as a signed int.
By default, `__index` has type `unsigned int`. When `_LIBCPP_ABI_VARIANT_INDEX_TYPE_OPTIMIZATION` is enabled, the type of `__index` is either `unsigned char`, `unsigned short`, or `unsigned int`, depending on how many fields there are -- as small as possible. For example, when `std::variant` has only a few types, the index type is `unsigned char`, and the npos value will be interpreted by LLDB as `255` when it should be `-1`.
This change does not special case the variant optimization; it just reads the type instead of assuming it's `unsigned int`.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D138892
This patch adds a formatter for `std::ranges::ref_view<T>`.
It simply holds a `T*`, so all this formatter does is dereference
this pointer and format it as `T` would be.
**Testing**
* Added API tests
Differential Revision: https://reviews.llvm.org/D138558
The libc++ data formatter for `std::shared_ptr` allows any namespace, but the test asserts that it must be the default `__1` namespace. Relax the regex to allow anything that looks like `__.*` (although we use `__[^:]*` so we don't match arbitrarily long text).
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D129898
The layout is essentially just reversed from the stable std::string layout.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D138850
This reverts commit 4346318f5c.
This test case is failing on macOS, reverting until it can be
looked at more closely to unblock the macOS CI bots.
```
File "/Volumes/work/llvm/llvm-project/lldb/test/API/functionalities/data-formatter/data-formatter-stl/generic/coroutine_handle/TestCoroutineHandle.py", line 121, in test_libcpp
self.do_test(USE_LIBCPP)
File "/Volumes/work/llvm/llvm-project/lldb/test/API/functionalities/data-formatter/data-formatter-stl/generic/coroutine_handle/TestCoroutineHandle.py", line 45, in do_test
self.expect_expr("noop_hdl",
File "/Volumes/work/llvm/llvm-project/lldb/packages/Python/lldbsuite/test/lldbtest.py", line 2441, in expect_expr
value_check.check_value(self, eval_result, str(eval_result))
File "/Volumes/work/llvm/llvm-project/lldb/packages/Python/lldbsuite/test/lldbtest.py", line 306, in check_value
test_base.assertEqual(self.expect_summary, val.GetSummary(),
AssertionError: 'noop_coroutine' != 'coro frame = 0x100004058'
- noop_coroutine+ coro frame = 0x100004058 : (std::coroutine_handle<void>) $1 = coro frame = 0x100004058 {
resume = 0x0000000100003344 (a.out`___lldb_unnamed_symbol223)
destroy = 0x0000000100003344 (a.out`___lldb_unnamed_symbol223)
}
Checking SBValue: (std::coroutine_handle<void>) $1 = coro frame = 0x100004058 {
resume = 0x0000000100003344 (a.out`___lldb_unnamed_symbol223)
destroy = 0x0000000100003344 (a.out`___lldb_unnamed_symbol223)
}
```
Those lldb_unnamed_symbols are synthetic names that ObjectFileMachO
adds to the symbol table, most often seen with stripped binaries,
based off of the function start addresses for all the functions -
if a function has no symbol name, lldb adds one of these names.
This change was originally landed via https://reviews.llvm.org/D132624
This reverts commit cd3091a88f.
This change crashes on macOS systems in
formatters::StdlibCoroutineHandleSyntheticFrontEnd when
it fails to create the `ValueObjectSP promise` and calls
a method on it. The failure causes a segfault while running
TestCoroutineHandle.py on the "LLDB Incremental" CI bot,
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/
This change originally landed via https://reviews.llvm.org/D132815
So far, the pretty printer for `std::coroutine_handle` internally
dereferenced the contained frame pointer displayed the `promise`
as a sub-value. As noticed in https://reviews.llvm.org/D132624
by @labath, this can lead to an endless loop in lldb during printing
if the coroutine frame pointers form a cycle.
This commit breaks the cycle by exposing the `promise` as a pointer
type instead of a value type. The depth to which the `frame variable`
and the `expression` commands dereference those pointers can be
controlled using the `--ptr-depth` argument.
Differential Revision: https://reviews.llvm.org/D132815
With this commit, the `std::coroutine_handle` pretty printer now
recognizes `std::noop_coroutine()` handles. For noop coroutine handles,
we identify use the summary string `noop_coroutine` and we don't print
children
Instead of
```
(std::coroutine_handle<void>) $3 = coro frame = 0x555555559058 {
resume = 0x00005555555564f0 (a.out`std::__1::coroutine_handle<std::__1::noop_coroutine_promise>::__noop_coroutine_frame_ty_::__dummy_resume_destroy_func() at noop_coroutine_handle.h:79)
destroy = 0x00005555555564f0 (a.out`std::__1::coroutine_handle<std::__1::noop_coroutine_promise>::__noop_coroutine_frame_ty_::__dummy_resume_destroy_func() at noop_coroutine_handle.h:79)
}
```
we now print
```
(std::coroutine_handle<void>) $3 = noop_coroutine
```
Differential Revision: https://reviews.llvm.org/D132735
The original commit was missing a `ClangASTImporter::CopyType` call.
Original commit message:
This commit teaches the `std::coroutine_handle` pretty-printer to
devirtualize type-erased promise types. This is particularly useful to
resonstruct call stacks, either of asynchronous control flow or of
recursive invocations of `std::generator`. For the example recently
introduced by https://reviews.llvm.org/D132451, printing the `__promise`
variable now shows
```
(std::__coroutine_traits_sfinae<task, void>::promise_type) __promise = {
continuation = coro frame = 0x555555562430 {
resume = 0x0000555555556310 (a.out`task detail::chain_fn<1>() at llvm-nested-example.cpp:66)
destroy = 0x0000555555556700 (a.out`task detail::chain_fn<1>() at llvm-nested-example.cpp:66)
promise = {
continuation = coro frame = 0x5555555623e0 {
resume = 0x0000555555557070 (a.out`task detail::chain_fn<2>() at llvm-nested-example.cpp:66)
destroy = 0x0000555555557460 (a.out`task detail::chain_fn<2>() at llvm-nested-example.cpp:66)
promise = {
...
}
}
result = 0
}
}
result = 0
}
```
(shortened to keep the commit message readable) instead of
```
(std::__coroutine_traits_sfinae<task, void>::promise_type) __promise = {
continuation = coro frame = 0x555555562430 {
resume = 0x0000555555556310 (a.out`task detail::chain_fn<1>() at llvm-nested-example.cpp:66)
destroy = 0x0000555555556700 (a.out`task detail::chain_fn<1>() at llvm-nested-example.cpp:66)
}
result = 0
}
```
Note how the new debug output reveals the complete asynchronous call
stack: our own function resumes `chain_fn<1>` which in turn will resume
`chain_fn<2>` and so on. Thereby this change allows users of lldb to
inspect the logical coroutine call stack without using any custom debug
scripts (although the display is still a bit clumsy. It would be nicer
to also integrate this into lldb's backtrace feature, but I don't know
how to do so)
The devirtualization currently works by introspecting the function
pointed to by the `destroy` pointer. (The `resume` pointer is not worth
much, given that for the final suspend point `resume` is set to a
nullptr. We have to use the `destroy` pointer instead.) We then look
for a `__promise` variable inside the `destroy` function. This
`__promise` variable is synthetically generated by LLVM, and looking at
its type reveals the type-erased promise_type.
This approach only works for clang-generated code, though. While gcc
also adds a `_Coro_promise` variable to the `resume` function, it does
not do so for the `destroy` function. However, we can't use the `resume`
function, as it will be reset to a nullptr at the final suspension
point. For the time being, I am happy with de-virtualization only working
for clang. A follow-up commit will further improve devirtualization and
also expose the variables spilled to the coroutine frame. As part of
this, I will also revisit gcc support.
Differential Revision: https://reviews.llvm.org/D132624
Follow up to D129386 where libc++ naming conventions were made consistent.
This changes the pattern to not rely on the internal name (`__cc` or `__cc_`),
and instead uses a pattern to check that the child has the form:
```
[0] = {
first = ...
```
Thanks to @rupprecht for pointing out this issue: https://reviews.llvm.org/D133259#3773120
Reviewed By: rupprecht
Differential Revision: https://reviews.llvm.org/D133395
This commit teaches the `std::coroutine_handle` pretty-printer to
devirtualize type-erased promise types. This is particularly useful to
resonstruct call stacks, either of asynchronous control flow or of
recursive invocations of `std::generator`. For the example recently
introduced by https://reviews.llvm.org/D132451, printing the `__promise`
variable now shows
```
(std::__coroutine_traits_sfinae<task, void>::promise_type) __promise = {
continuation = coro frame = 0x555555562430 {
resume = 0x0000555555556310 (a.out`task detail::chain_fn<1>() at llvm-nested-example.cpp:66)
destroy = 0x0000555555556700 (a.out`task detail::chain_fn<1>() at llvm-nested-example.cpp:66)
promise = {
continuation = coro frame = 0x5555555623e0 {
resume = 0x0000555555557070 (a.out`task detail::chain_fn<2>() at llvm-nested-example.cpp:66)
destroy = 0x0000555555557460 (a.out`task detail::chain_fn<2>() at llvm-nested-example.cpp:66)
promise = {
...
}
}
result = 0
}
}
result = 0
}
```
(shortened to keep the commit message readable) instead of
```
(std::__coroutine_traits_sfinae<task, void>::promise_type) __promise = {
continuation = coro frame = 0x555555562430 {
resume = 0x0000555555556310 (a.out`task detail::chain_fn<1>() at llvm-nested-example.cpp:66)
destroy = 0x0000555555556700 (a.out`task detail::chain_fn<1>() at llvm-nested-example.cpp:66)
}
result = 0
}
```
Note how the new debug output reveals the complete asynchronous call
stack: our own function resumes `chain_fn<1>` which in turn will resume
`chain_fn<2>` and so on. Thereby this change allows users of lldb to
inspect the logical coroutine call stack without using any custom debug
scripts (although the display is still a bit clumsy. It would be nicer
to also integrate this into lldb's backtrace feature, but I don't know
how to do so)
The devirtualization currently works by introspecting the function
pointed to by the `destroy` pointer. (The `resume` pointer is not worth
much, given that for the final suspend point `resume` is set to a
nullptr. We have to use the `destroy` pointer instead.) We then look
for a `__promise` variable inside the `destroy` function. This
`__promise` variable is synthetically generated by LLVM, and looking at
its type reveals the type-erased promise_type.
This approach only works for clang-generated code, though. While gcc
also adds a `_Coro_promise` variable to the `resume` function, it does
not do so for the `destroy` function. However, we can't use the `resume`
function, as it will be reset to a nullptr at the final suspension
point. For the time being, I am happy with de-virtualization only working
for clang. A follow-up commit will further improve devirtualization and
also expose the variables spilled to the coroutine frame. As part of
this, I will also revisit gcc support.
Differential Revision: https://reviews.llvm.org/D132624
This change adds a `--recognizer-function` (`-R`) to `type summary add`
and `type synth add` that allows users to specify that the names in
the command are not type names but python function names.
It also adds an example to lldb/examples, and a section in the data
formatters documentation on how to use recognizer functions.
Differential Revision: https://reviews.llvm.org/D137000
This requirement dates back to ten years ago and the test seems to work
nowadays with either libc++ or libstdc++.
Differential Revision: https://reviews.llvm.org/D136608
This reverts commit 0205aa4a02 because it
breaks TestArray.py:
a->c = <parent failed to evaluate: parent is NULL>
I decided to revert instead of disable the test because it looks like a
legitimate issue with the patch.
This patch adds a new matching method for data formatters, in addition
to the existing exact typename and regex-based matching. The new method
allows users to specify the name of a Python callback function that
takes a `SBType` object and decides whether the type is a match or not.
Here is an overview of the changes performed:
- Add a new `eFormatterMatchCallback` matching type, and logic to handle
it in `TypeMatcher` and `SBTypeNameSpecifier`.
- Extend `FormattersMatchCandidate` instances with a pointer to the
current `ScriptInterpreter` and the `TypeImpl` corresponding to the
candidate type, so we can run registered callbacks and pass the type
to them. All matcher search functions now receive a
`FormattersMatchCandidate` instead of a type name.
- Add some glue code to ScriptInterpreterPython and the SWIG bindings to
allow calling a formatter matching callback. Most of this code is
modeled after the equivalent code for watchpoint callback functions.
- Add an API test for the new callback-based matching feature.
For more context, please check the RFC thread where this feature was
originally discussed:
https://discourse.llvm.org/t/rfc-python-callback-for-data-formatters-type-matching/64204/11
Differential Revision: https://reviews.llvm.org/D135648
The test currently sets `USE_LIBSTDCPP = 0`, which is curious given the
behavior of `and` and `or` in Makefiles (the contents of the variables
are not important). In particular, this causes the tests to not use the
standard libraries appropriately.
To capture the actual intent of the test, we're changing this to
`USE_LIBCXX=1`.
Differential Revision: https://reviews.llvm.org/D136171
I'm trying to add a test which tests that the same substr occurs twice in a row, but it matches even if only one of the substr occurs.
This found a bug in concurrent_base.py.
Reviewed By: DavidSpickett
Differential Revision: https://reviews.llvm.org/D135826
This change fixes two issues in ValueObject::GetExpressionPath method:
1. Accessing members of struct references used to produce expression
paths such as "str.&str.member" (instead of the expected
"str.member"). This is fixed by assigning the flag tha the child
value is a dereference when calling Dereference() on references
and adjusting logic in expression path creation.
2. If the parent of member access is dereference, the produced
expression path was "*(ptr).member". This is incorrect, since it
dereferences the member instead of the pointer. This is fixed by
wrapping dereference expression into parenthesis, resulting with
"(*ptr).member".
Reviewed By: werat, clayborg
Differential Revision: https://reviews.llvm.org/D132734