The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
4. Some changes have been deleted for the following reasons:
- Some files had a variable also named cast
- Some files had not included a header file that defines the cast
functions
- Some files are definitions of the classes that have the casting
methods, so the code still refers to the method instead of the
function without adding a prefix or removing the method declaration
at the same time.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
mlir/lib/**/IR/\
mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
mlir/test/lib/Dialect/Test/TestTypes.cpp\
mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
mlir/test/lib/Dialect/Test/TestAttributes.cpp\
mlir/unittests/TableGen/EnumsGenTest.cpp\
mlir/test/python/lib/PythonTestCAPI.cpp\
mlir/include/mlir/IR/
```
Differential Revision: https://reviews.llvm.org/D150123
The terminator of this op is special: it does not just yield a value,
but bufferizes to a memcpy. This requires special treatment to make sure
that deallocs are placed after the memcpy. (By default, deallocs are
placed right before the terminator.)
Differential Revision: https://reviews.llvm.org/D148408
These old patterns are not in use in either MLIR or downstream projects except for one test.
Additionally this is redundant with logic in the tensor.pad tiling implementation.
Drop SplitPaddingPatterns to reduce entropy.
Differential Revision: https://reviews.llvm.org/D148207
These patterns follow FoldMemRefAliasOps which is further refactored for reuse.
In the process, fix FoldMemRefAliasOps handling of strides for vector.transfer ops which was previously incorrect.
These opt-in patterns generalize the existing canonicalizations on vector.transfer ops.
In the future the blanket canonicalizations will be retired.
They are kept for now to minimize porting disruptions.
Differential Revision: https://reviews.llvm.org/D146624
Currently the `getTiledImplementation` and `generateResultTileValue`
return just `SmallVector<Operation *>` and `FailureOr<Value>`.
- For `getTiledImplementation` returning empty implies tiling wasnt
done. There is also an implicit assumption that the tiled operation
results correspond to the tiled values of the result of the original
operation. This cannot handle cases where the tiled implementation
might use multiple operations to compute the tiled value for the
results of the untiled operation. Sometimes, the tiled operation
might not directly give the tiled values, and might require casts,
etc to get a replacement.
- For `generateResultTileValue`, it is assumed that the op defining
the returned `Value` is the operation that represents the tiled
computation. Again presence of casts, etc violate this.
Instead make these methods return
```
struct TilingResult {
SmallVector<Operation *> tiledOps;
SmallVector<Value> tiledValues;
};
```
The `tiledOps` represent the operations generated that are relevant
for subsequent transformations. The `tiledValues` represent the tiled
values for the results of the original operation. This better
transmits the state of the transformed IR.
As a consequence the following methods also return `FailureOr<TilingResult>`
- `tensor::replaceExtractSliceWithTiledProducer`
- `tensor::bubbleUpPadSlice`
Differential Revision: https://reviews.llvm.org/D145133
This does not work by a mere composition of `enumerate` and `zip_equal`,
because C++17 does not allow for recursive expansion of structured
bindings.
This implementation uses `zippy` to manage the iteratees and adds the
stream of indices as the first zipped range. Because we have an upfront
assertion that all input ranges are of the same length, we only need to
check if the second range has ended during iteration.
As a consequence of using `zippy`, `enumerate` will now follow the
reference and lifetime semantics of the `zip*` family of functions. The
main difference is that `enumerate` exposes each tuple of references
through a new tuple-like type `enumerate_result`, with the familiar
`.index()` and `.value()` member functions.
Because the `enumerate_result` returned on dereference is a
temporary, enumeration result can no longer be used through an
lvalue ref.
Reviewed By: dblaikie, zero9178
Differential Revision: https://reviews.llvm.org/D144503
This change adds a new helper function `mlir::reifyResultShapes` that calls the corresponding interface method and also checks the result produced by the implementation when running in debug mode. Bugs due to incorrect interface implementations can be difficult to debug.
This helper function also reduces the amount of code needed at call sites: the cast to `ReifyRankedShapedTypeOpInterface` is done in the helper function.
Differential Revision: https://reviews.llvm.org/D145777
`reifyResultShapes` now returns `OpFoldResult`s instead of `Value`s. This is often more efficient because many transformations immediately attempt to extract a constant from the reified values.
Differential Revision: https://reviews.llvm.org/D145250
`getAliasingOpOperands`/`getAliasingOpResults` now encodes OpOperand/OpResult, buffer relation and a degree of certainty. E.g.:
```
// aliasingOpOperands(%r) = {(%t, EQUIV, DEFINITE)}
// aliasingOpResults(%t) = {(%r, EQUIV, DEFINITE)}
%r = tensor.insert %f into %t[%idx] : tensor<?xf32>
// aliasingOpOperands(%r) = {(%t0, EQUIV, MAYBE), (%t1, EQUIV, MAYBE)}
// aliasingOpResults(%t0) = {(%r, EQUIV, MAYBE)}
// aliasingOpResults(%t1) = {(%r, EQUIV, MAYBE)}
%r = arith.select %c, %t0, %t1 : tensor<?xf32>
```
`BufferizableOpInterface::bufferRelation` is removed, as it is now part of `getAliasingOpOperands`/`getAliasingOpResults`.
This change allows for better analysis, in particular wrt. equivalence. This allows additional optimizations and better error checking (which is sometimes overly conservative). Examples:
* EmptyTensorElimination can eliminate `tensor.empty` inside `scf.if` blocks. This requires a modeling of equivalence: It is not a per-OpResult property anymore. Instead, it can be specified for each OpOperand and OpResult. This is important because `tensor.empty` may be eliminated only if all values on the SSA use-def chain to the final consumer (`tensor.insert_slice`) are equivalent.
* The detection of "returning allocs from a block" can be improved. (Addresses a TODO in `assertNoAllocsReturned`.) This allows us to bufferize IR such as "yielding a `tensor.extract_slice` result from an `scf.if` branch", which currently fails to bufferize because the alloc detection is too conservative.
* Better bufferization of loops. Aliases of the iter_arg can be yielded (even if they are not equivalent) without having to realloc and copy the entire buffer on each iteration.
The above-mentioned examples are not yet implemented with this change. This change just improves the BufferizableOpInterface, its implementations and related helper functions, so that better aliasing information is available for each op.
Differential Revision: https://reviews.llvm.org/D142129
This interface method is used to compute the buffer type of a value during bufferization. It was missing. This is interface method is used during loop bufferization.
Also fix a bug where a cast from an unranked tensor to a ranked tensor type did not always apply a fully dynamic layout map on the result memref.
Differential Revision: https://reviews.llvm.org/D143063
* `getAliasingOpOperand` => `getAliasingOpOperands`
* `getAliasingOpResult` => `getAliasingOpResults`
Also a few minor code cleanups and better documentation.
Differential Revision: https://reviews.llvm.org/D142979
The previous name was incorrect. `None` does not mean that there is no buffer relation between two buffers (seems to imply that they do not alias for sure); instead it means that there is no further information available.
Differential Revision: https://reviews.llvm.org/D142870
The previous lingo was confusing. There are no writes on tensors. There are only definitions.
Also some minor cleanup and better documentation.
Differential Revision: https://reviews.llvm.org/D141790
Instead, use the builder and infer the return type based on the inner `yield` ops.
Also, fix uses that do not create the terminator as required for the callback builders.
Differential Revision: https://reviews.llvm.org/D142056
The tensor.pack ops have pad semantic, so we can fold pad + pack into
pack when
1. They have the same padding values or the pack op does not have
padding values.
2. The pad op does not have low paddings.
The tensor.unpack ops have extract_slice semantic, so we can fold unpack
+ extract_slice into unpack when
1. All the offsets are 0s.
2. All the strides are 1s.
Reviewed By: tyb0807
Differential Revision: https://reviews.llvm.org/D141099
std::optional::value() has undesired exception checking semantics and is
unavailable in older Xcode (see _LIBCPP_AVAILABILITY_BAD_OPTIONAL_ACCESS). The
call sites block std::optional migration.
This is part of an effort to migrate from llvm::Optional to
std::optional. This patch changes the way mlir-tblgen generates .inc
files, and modifies tests and documentation appropriately. It is a "no
compromises" patch, and doesn't leave the user with an unpleasant mix of
llvm::Optional and std::optional.
A non-trivial change has been made to ControlFlowInterfaces to split one
constructor into two, relating to a build failure on Windows.
See also: https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Signed-off-by: Ramkumar Ramachandra <r@artagnon.com>
Differential Revision: https://reviews.llvm.org/D138934
The op is not bufferizable but should be analyzable (for `EliminateEmptyTensors`, which uses the bufferization infrastructure).
Also improve debugging functionality and error messages.
Also adds a missing pass to the sparse pipeline. (tensor.empty should be replaced with bufferization.alloc_tensor, but it sometimes used to work without depending on how the tensor.empty is used. Now we always fail explicitly.)
At the moment, they are a part of EmptyOp::getCanonicalizationPatterns. When
extract_slice(tensor.empty) is rewritten as a new tensor.empty, it could
happen that we end up with two tensor.empty ops, since the original
tensor.empty can have two users. After bufferization such cases result in two
allocations.
Differential Revision: https://reviews.llvm.org/D139308
This reverts D132662 (apart from overall cleanups), which introduced a too aggressive optimization for tensor.insert_slice bufferization. Instead, bufferizesToMemoryRead is improved to handle some of these cases. The remaining cases can still bufferize efficiently when running the canonicalizer before the bufferization.
Differential Revision: https://reviews.llvm.org/D138745
MemRef has been accepting a general Attribute as memory space for
a long time. This commits updates bufferization side to catch up,
which allows downstream users to plugin customized symbolic memory
space. This also eliminates quite a few `getMemorySpaceAsInt`
calls, which is deprecated.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D138330
This change adds memory space support to tensor.pad. (tensor.generate and tensor.from_elements do not support memory spaces yet.)
The memory space is inferred from the buffer of the source tensor.
Instead of lowering tensor.pad to tensor.generate + tensor.insert_slice, it is now lowered to bufferization.alloc_tensor (with the correct memory space) + linalg.map + tensor.insert_slice.
Memory space support for the remaining two tensor ops is left for a later point, as this requires some more design discussions.
Differential Revision: https://reviews.llvm.org/D136265
There is no memref equivalent of tensor.generate. The purpose of this change is to avoid creating scf.parallel loops during bufferization.
Differential Revision: https://reviews.llvm.org/D136767
tensor.insert and tensor.insert_slice (as destination style ops) do no longer need to implement the entire BufferizableOpInterface.
Differential Revision: https://reviews.llvm.org/D136347
Prior to this change, the "ExtractSliceFromReshape" pattern would transform
```
%collapsed = tensor.collapse_shape %input [[0, 1], [2]]
: tensor<1x11x100xf32> into tensor<11x100xf32>
%slice = tensor.extract_slice %collapsed [%offt, 0] [%size, 100] [1, 1]
: tensor<11x100xf32> to tensor<?x100xf32>
```
into a loop that iterated over the range `%size - %offt`, that pieces
together multiple sub-slices of `%input` along the first dimension. This
is correct but obviously inefficient. The technical condition is that
collapsing at-most-one non-unit dimension of `%src` will not result in a
subsequent slice along the corresponding dimension of `%collapsed`
mapping across discontinuities in the index space of `%src`. Thus, the
definition of a "linearized dimension" (from the perspective of
`tensor.collapse_shape`) is updated to reflect this condition.
The transform will now generate
```
%slice = tensor.extract_slice %input [0, %offt, 0][1, %size, 100] [1, 1]
: tensor<1x11x100xf32> to tensor<1x?x100xf32>
%result = tensor.collapse_shape [[0, 1], [2]]
: tensor<1x?x100xf32> to tensor<?x100xf32>
```
which can be further canonicalized.
Additional tests are added to check this family of edge cases.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D135726
Inserting a tensor into an equivalent tensor is a no-op after bufferization. No alloc is needed.
Differential Revision: https://reviews.llvm.org/D132662
So that these utility functions can also be used ViewLikeInterface
ops not in the memref dialect.
Reviewed By: mravishankar, christopherbate
Differential Revision: https://reviews.llvm.org/D134487
This relands commit 5d4603a02d.
It cludes fixes to GCC test failures and simplification to
the implementation.
Co-authored-by: Mahesh Ravishankar <ravishankarm@google.com>
Co-authored-by: Christopher Bate <cbate@nvidia.com>
This function must be implemented for all ops, where the result memref type is different from the input memref type.
Differential Revision: https://reviews.llvm.org/D134331
This commit adds utility functions to perform general merging of
OffsetSizeAndStrideOpInterface by supporting producer rank
reducing and non-unit strides.
With it we can extend MergeConsecutiveExtractSlice to support
more cases.
Co-authored-by: Mahesh Ravishankar <ravishankarm@google.com>
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D134294
Consecutive tensor.insert_slice/tensor.extract_slice can be
created for the case like tiling convolution and then downsizing
2-D convolutions into 1-D ones. It hinders further transformations.
So adding these patterns to clean it up.
Given that bufferization is sensitive and have requirements over
the IR structure (see https://reviews.llvm.org/D132666),
these patterns are put in Transforms/ with separate entry points
for explicit collection.
Reviewed By: ThomasRaoux, mravishankar
Differential Revision: https://reviews.llvm.org/D133871
The transformation would fail if none of the sliced dimensions were
linearized by the producing `tensor.collapse_shape`. This is a trivial
edge case but it wasn't correctly tested. Fixes the issue and adds a test.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D134088