The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Context:
* https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…"
* Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This follows a previous patch that updated calls
`op.cast<T>()-> cast<T>(op)`. However some cases could not handle an
unprefixed `cast` call due to occurrences of variables named cast, or
occurring inside of class definitions which would resolve to the method.
All C++ files that did not work automatically with `cast<T>()` are
updated here to `llvm::cast` and similar with the intention that they
can be easily updated after the methods are removed through a
find-replace.
See https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
for the clang-tidy check that is used and then update printed
occurrences of the function to include `llvm::` before.
One can then run the following:
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-export-fixes /tmp/cast/casts.yaml mlir/*\
-header-filter=mlir/ -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
```
Differential Revision: https://reviews.llvm.org/D150348
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
4. Some changes have been deleted for the following reasons:
- Some files had a variable also named cast
- Some files had not included a header file that defines the cast
functions
- Some files are definitions of the classes that have the casting
methods, so the code still refers to the method instead of the
function without adding a prefix or removing the method declaration
at the same time.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
mlir/lib/**/IR/\
mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
mlir/test/lib/Dialect/Test/TestTypes.cpp\
mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
mlir/test/lib/Dialect/Test/TestAttributes.cpp\
mlir/unittests/TableGen/EnumsGenTest.cpp\
mlir/test/python/lib/PythonTestCAPI.cpp\
mlir/include/mlir/IR/
```
Differential Revision: https://reviews.llvm.org/D150123
The existing vector.transpose lowering patterns only triggers if the
input vector is 2D. The revision extends the pattern to handle n-D
vectors which are effectively 2-D vectors (e.g., vector<1x4x1x8x1).
It refactors a common check about 2-D vectors from X86Vector
lowering to VectorUtils.h so it can be reused by both sides.
Reviewed By: dcaballe
Differential Revision: https://reviews.llvm.org/D149908
The pattern added here is intended as a last resort for targets like
SPIR-V where there are vector size restrictions and we need to be able
to break down large vector types. Vectorizing loads/stores for small
bitwidths (e.g. i8) relies on bitcasting to a larger element type and
patterns to bubble bitcast ops to where they can cancel.
This fails for cases such as
```
%1 = arith.trunci %0 : vector<2x32xi32> to vector<2x32xi8>
vector.transfer_write %1, %destination[%c0, %c0] {in_bounds = [true, true]} : vector<2x32xi8>, memref<2x32xi8>
```
where the `arith.trunci` op essentially does the job of one of the
bitcasts, leading to a bitcast that need to be further broken down
```
vector.bitcast %0 : vector<16xi8> to vector<4xi32>
```
Differential Revision: https://reviews.llvm.org/D149065
This pattern is useful for SPIR-V to unroll to a supported vector size
before later lowerings. The unrolling pattern is closer to an
elementwise op than the transfer ops because the index values from which
to extract elements are captured by the index vector and thus there is
no need to update the base offsets when unrolling gather.
Differential Revision: https://reviews.llvm.org/D149066
This commit exposes the transformation behind the pattern.
It is useful for more targeted application on a specific op
for once.
Reviewed By: kuhar
Differential Revision: https://reviews.llvm.org/D148758
Currently conversions to interfaces may happen implicitly (e.g.
`Attribute -> TypedAttr`), failing a runtime assert if the interface
isn't actually implemented. This change marks the `Interface(ValueT)`
constructor as explicit so that a cast is required.
Where it was straightforward to I adjusted code to not require casts,
otherwise I just made them explicit.
Depends on D148491, D148492
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D148493
This was incorrect when the number of dropped source dims was smaller
than the number of dropped dst dims. We still need to insert zeros if
there is anything dropped from the src.
Differential Revision: https://reviews.llvm.org/D148636
We need to create a new type with transposed shape after
transposing the operand in `CanonicalizeContractMatmulToMMT`.
Reviewed By: kuhar, dcaballe
Differential Revision: https://reviews.llvm.org/D148470
When dropping leading unit dims of vector.insert's operands and creating
a new vector.insert, its new position rank should be computed explicitly
in two steps: first based on the numbers of leading unit dims dropped
from the vector.insert's destination, then based on the numbers of
leading unit dims dropped from its source.
Reviewed By: pifon2a
Differential Revision: https://reviews.llvm.org/D147280
This patch removes the historical lhs and rhs masks in vector.contract,
now that vector.mask supports vector.contract and the lhs and rhs masks
are barely supported by all the vector.contract lowerings and
transformations.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D144430
This revision adds vector transform operations that allow us to better inspect the composition
of various lowerings that were previously very opaque.
This commit is NFC in that it does not change patterns beyond adding `rewriter.notifyFailure` messages
and it does not change the tests beyond breaking them into pieces and using transforms instead of
throwaway opaque test passes.
Reviewed By: ftynse, springerm
Co-authored-by: Alex Zinenko <zinenko@google.com>
Differential Revision: https://reviews.llvm.org/D146755
Vector dialect patterns have grown enormously in the past year to a point where they are now impenetrable.
Start reorganizing them towards finer-grained control.
Differential Revision: https://reviews.llvm.org/D146736
Replace references to enumerate results with either result_pairs
(reference wrapper type) or structured bindings. I did not use
structured bindings everywhere as it wasn't clear to me it would
improve readability.
This is in preparation to the switch to zip semantics which won't
support non-const lvalue reference to elements:
https://reviews.llvm.org/D144503.
I chose to use values instead of const lvalue-refs because MLIR is
biased towards avoiding `const` local variables. This won't degrade
performance because currently `result_pair` is cheap to copy (size_t
+ iterator), and in the future, the enumerator iterator dereference
will return temporaries anyway.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D146006
This is for targets that do not support gather-like ops, e.g., SPIR-V.
Gather is expanded into lower-level vector ops with memory accesses
guarded with `scf.if`.
I also considered generating `vector.maskedload`s, but decided against
it to keep the `memref` and `tensor` codepath closer together. There's a
good chance that if a target doesn't support gather it does not support
masked loads either.
Issue: https://github.com/llvm/llvm-project/issues/60905
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D145942
This pattern is not specific to nvgpu; I intend to use in SPIR-V codegen. `VectorTransforms` seems like a more generally useful place.
In addition:
- Fix a bug in the second condition (the dimensions were swapped for RHS).
- Add tests.
- Add support for externally provided filter functions, similar to other vector transforms.
- Prefer to transpose before zero/sign-extending inputs.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D145638
This patch adds support for masked vector.contract ops that needs to be
decomposed using the ContractionOpLowering pattern. It just slices the
mask according to the rest of the lowering.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D144427
This patch adds masking support for more contraction flavors including those
with any combiner operation (add, mul, min, max, and, or, etc.) and
regular matmul contractions.
Combiner operations that are performing vertical reductions (and,
therefore, they are not represented with a horizontal reduction
operation) can be executed unmasked. However, the previous value of
the accumulator must be propagated for lanes that shouldn't accumulate.
We achieve this goal by introducing a select operation after the
accumulator to choose between the combined and the previous accumulator
value. This design decision is made to avoid introducing masking support
to all the arithmetic and logical operations in the Arith dialect. VP
intrinsics do not support pass-thru values either so we would have to
generate the same sequence when lowering to LLVM. The op + select
pattern is peepholed by some backend with native masking support for those
operations.
Consequently, this patch removes masking support from the vector.fma
operation to follow the same approach for all the combiner operations.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D144239
Plain `getVectorType()` can be quite confusing and error-prone
given that, well, vector ops always work on vector types, and
it can commonly involve both source and result vectors. So this
commit makes various such accessor methods to be explicit w.r.t.
source or result vectors.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D144159
This patch adds support for masked vector.gather ops using the
vector.mask representation. It includes the implementation of the
MaskableOpInterface, Linalg vectorizer support and lowering to LLVM.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D143939
This patch adds support for masking vector.contract ops with the
vector.mask approach. This also includes the lowering of vector.contract
through the vector.outerproduct path to LLVM. For now, this only adds
support for one of the many potential flavors of
vector.contract/vector.outerproduct but unsupported cases will fail
gratefully.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D143965
`getAliasingOpOperands`/`getAliasingOpResults` now encodes OpOperand/OpResult, buffer relation and a degree of certainty. E.g.:
```
// aliasingOpOperands(%r) = {(%t, EQUIV, DEFINITE)}
// aliasingOpResults(%t) = {(%r, EQUIV, DEFINITE)}
%r = tensor.insert %f into %t[%idx] : tensor<?xf32>
// aliasingOpOperands(%r) = {(%t0, EQUIV, MAYBE), (%t1, EQUIV, MAYBE)}
// aliasingOpResults(%t0) = {(%r, EQUIV, MAYBE)}
// aliasingOpResults(%t1) = {(%r, EQUIV, MAYBE)}
%r = arith.select %c, %t0, %t1 : tensor<?xf32>
```
`BufferizableOpInterface::bufferRelation` is removed, as it is now part of `getAliasingOpOperands`/`getAliasingOpResults`.
This change allows for better analysis, in particular wrt. equivalence. This allows additional optimizations and better error checking (which is sometimes overly conservative). Examples:
* EmptyTensorElimination can eliminate `tensor.empty` inside `scf.if` blocks. This requires a modeling of equivalence: It is not a per-OpResult property anymore. Instead, it can be specified for each OpOperand and OpResult. This is important because `tensor.empty` may be eliminated only if all values on the SSA use-def chain to the final consumer (`tensor.insert_slice`) are equivalent.
* The detection of "returning allocs from a block" can be improved. (Addresses a TODO in `assertNoAllocsReturned`.) This allows us to bufferize IR such as "yielding a `tensor.extract_slice` result from an `scf.if` branch", which currently fails to bufferize because the alloc detection is too conservative.
* Better bufferization of loops. Aliases of the iter_arg can be yielded (even if they are not equivalent) without having to realloc and copy the entire buffer on each iteration.
The above-mentioned examples are not yet implemented with this change. This change just improves the BufferizableOpInterface, its implementations and related helper functions, so that better aliasing information is available for each op.
Differential Revision: https://reviews.llvm.org/D142129
We should distribute ops that have other uses than the yield op as this
would duplicate those ops.
Differential Revision: https://reviews.llvm.org/D143629
1-D multi-reductions follow a different lowering path (they are
converted to 2-D multi-reductions) so masked variants need to be
supported explicitly.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D143453
* `getAliasingOpOperand` => `getAliasingOpOperands`
* `getAliasingOpResult` => `getAliasingOpResults`
Also a few minor code cleanups and better documentation.
Differential Revision: https://reviews.llvm.org/D142979
The masked op can currently not bufferize out-of-place. Such IR would be rejected by the One-Shot Bufferize because it would mean that a new buffer allocation is yielded from a block. Furthermore, only one operation is currently allowed inside `vector.mask`.
Differential Revision: https://reviews.llvm.org/D141686
The rewrite driver is typically applied to a single region or all regions of the same op. There is no longer an overload to apply the rewrite driver to a list of regions.
This simplifies the rewrite driver implementation because the scope is now a single region as opposed to a list of regions.
Note: This change is not NFC because `config.maxIterations` and `config.maxNumRewrites` is now counted for each region separately. Furthermore, worklist filtering (`scope`) is now applied to each region separately.
Differential Revision: https://reviews.llvm.org/D142611
Instead, use the builder and infer the return type based on the inner `yield` ops.
Also, fix uses that do not create the terminator as required for the callback builders.
Differential Revision: https://reviews.llvm.org/D142056
Add pattern to lower transfer_write with permutation map that are not
permutation of minor identity map.
Differential Revision: https://reviews.llvm.org/D141815
Refactor the definition of the enums that are used in the lower_vectors
operation of the transformation dialect.
This avoid duplicating the definition of all the configurations that
this operation can trigger.
NFC
Differential Revision: https://reviews.llvm.org/D141867
This patch enables vectorization of reductions in Linalg vectorizer
using the vector.mask operation. It also introduces the logic to slice
and propagate the vector mask of a masked multi-reduction to their
respective lowering operations.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D141571
Ops that use TypesMatchWith to constrain result types for verification
and to infer result types during parser generation should also be able
to have the `inferReturnTypes` method auto generated. This patch
upgrades the logic for generating `inferReturnTypes` to handle the
TypesMatchWith trait by building a type inference graph where each edge
corresponds to "type of A can be inferred from type of B", supporting
transformers other than `"$_self"`.
Reviewed By: lattner, rriddle
Differential Revision: https://reviews.llvm.org/D141231