The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Context:
* https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…"
* Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This follows a previous patch that updated calls
`op.cast<T>()-> cast<T>(op)`. However some cases could not handle an
unprefixed `cast` call due to occurrences of variables named cast, or
occurring inside of class definitions which would resolve to the method.
All C++ files that did not work automatically with `cast<T>()` are
updated here to `llvm::cast` and similar with the intention that they
can be easily updated after the methods are removed through a
find-replace.
See https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
for the clang-tidy check that is used and then update printed
occurrences of the function to include `llvm::` before.
One can then run the following:
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-export-fixes /tmp/cast/casts.yaml mlir/*\
-header-filter=mlir/ -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
```
Differential Revision: https://reviews.llvm.org/D150348
There was a discrepancy where the flag was honored when passed through the
command line, but not when passed through the API, which was leading to a
python test failing.
This new features enabled to dedicate custom storage inline within operations.
This storage can be used as an alternative to attributes to store data that is
specific to an operation. Attribute can also be stored inside the properties
storage if desired, but any kind of data can be present as well. This offers
a way to store and mutate data without uniquing in the Context like Attribute.
See the OpPropertiesTest.cpp for an example where a struct with a
std::vector<> is attached to an operation and mutated in-place:
struct TestProperties {
int a = -1;
float b = -1.;
std::vector<int64_t> array = {-33};
};
More complex scheme (including reference-counting) are also possible.
The only constraint to enable storing a C++ object as "properties" on an
operation is to implement three functions:
- convert from the candidate object to an Attribute
- convert from the Attribute to the candidate object
- hash the object
Optional the parsing and printing can also be customized with 2 extra
functions.
A new options is introduced to ODS to allow dialects to specify:
let usePropertiesForAttributes = 1;
When set to true, the inherent attributes for all the ops in this dialect
will be using properties instead of being stored alongside discardable
attributes.
The TestDialect showcases this feature.
Another change is that we introduce new APIs on the Operation class
to access separately the inherent attributes from the discardable ones.
We envision deprecating and removing the `getAttr()`, `getAttrsDictionary()`,
and other similar method which don't make the distinction explicit, leading
to an entirely separate namespace for discardable attributes.
Recommit d572cd1b06 after fixing python bindings build.
Differential Revision: https://reviews.llvm.org/D141742
This new features enabled to dedicate custom storage inline within operations.
This storage can be used as an alternative to attributes to store data that is
specific to an operation. Attribute can also be stored inside the properties
storage if desired, but any kind of data can be present as well. This offers
a way to store and mutate data without uniquing in the Context like Attribute.
See the OpPropertiesTest.cpp for an example where a struct with a
std::vector<> is attached to an operation and mutated in-place:
struct TestProperties {
int a = -1;
float b = -1.;
std::vector<int64_t> array = {-33};
};
More complex scheme (including reference-counting) are also possible.
The only constraint to enable storing a C++ object as "properties" on an
operation is to implement three functions:
- convert from the candidate object to an Attribute
- convert from the Attribute to the candidate object
- hash the object
Optional the parsing and printing can also be customized with 2 extra
functions.
A new options is introduced to ODS to allow dialects to specify:
let usePropertiesForAttributes = 1;
When set to true, the inherent attributes for all the ops in this dialect
will be using properties instead of being stored alongside discardable
attributes.
The TestDialect showcases this feature.
Another change is that we introduce new APIs on the Operation class
to access separately the inherent attributes from the discardable ones.
We envision deprecating and removing the `getAttr()`, `getAttrsDictionary()`,
and other similar method which don't make the distinction explicit, leading
to an entirely separate namespace for discardable attributes.
Differential Revision: https://reviews.llvm.org/D141742
This includes a small runtime acting as callback for the ExecutionEngine
and a C API that makes it possible to control from the debugger.
A python script for LLDB is included that hook a new `mlir` subcommand
and allows to set breakpoints and inspect the current action, the context
and the stack.
Differential Revision: https://reviews.llvm.org/D144817
X. Sun et al. (https://dl.acm.org/doi/10.5555/3454287.3454728) published
a paper showing that an FP format with 4 bits of exponent, 3 bits of
significand and an exponent bias of 11 would work quite well for ML
applications.
Google hardware supports a variant of this format where 0x80 is used to
represent NaN, as in the Float8E4M3FNUZ format. Just like the
Float8E4M3FNUZ format, this format does not support -0 and values which
would map to it will become +0.
This format is proposed for inclusion in OpenXLA's StableHLO dialect: https://github.com/openxla/stablehlo/pull/1308
As part of inclusion in that dialect, APFloat needs to know how to
handle this format.
Differential Revision: https://reviews.llvm.org/D146441
This is a convenient flag for context where we intend to summarize a top-level
operation without the full-blown regions it may hold.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D145889
Replace references to enumerate results with either result_pairs
(reference wrapper type) or structured bindings. I did not use
structured bindings everywhere as it wasn't clear to me it would
improve readability.
This is in preparation to the switch to zip semantics which won't
support non-const lvalue reference to elements:
https://reviews.llvm.org/D144503.
I chose to use values instead of const lvalue-refs because MLIR is
biased towards avoiding `const` local variables. This won't degrade
performance because currently `result_pair` is cheap to copy (size_t
+ iterator), and in the future, the enumerator iterator dereference
will return temporaries anyway.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D146006
This is a convenient flag for context where we intend to summarize a top-level
operation without the full-blown regions it may hold.
Differential Revision: https://reviews.llvm.org/D145889
Float8E5M2FNUZ and Float8E4M3FNUZ have been added to APFloat in D141863.
This change adds these types as MLIR builtin types alongside Float8E5M2
and Float8E4M3FN (added in D133823 and D138075).
Reviewed By: krzysz00
Differential Revision: https://reviews.llvm.org/D143744
This commit restructures the sub element infrastructure to be a core part
of attributes and types, instead of being relegated to an interface. This
establishes sub element walking/replacement as something "always there",
which makes it easier to rely on for correctness/etc (which various bits of
infrastructure want, such as Symbols).
Attribute/Type now have `walk` and `replace` methods directly
accessible, which provide power API for interacting with sub elements. As
part of this, a new AttrTypeWalker class is introduced that supports caching
walked attributes/types, and a friendlier API (see the simplification of symbol
walking in SymbolTable.cpp).
Differential Revision: https://reviews.llvm.org/D142272
This streamlines the implementation and makes it so that the virtual
tables are in the binary instead of dynamically assembled during initialization.
The dynamic allocation size of op registration is also smaller with this
change.
This reverts commit 7bf1e441da
and re-introduce e055aad5ff
after fixing the windows crash by making ParseAssemblyFn a
unique_function again
Differential Revision: https://reviews.llvm.org/D141492
This streamlines the implementation and makes it so that the virtual tables are in the binary instead of dynamically assembled during initialization.
The dynamic allocation size of op registration is also smaller with this
change.
Differential Revision: https://reviews.llvm.org/D141492
This patch removes the implementation of TypedAttr and ElementsAttr
from DenseArrayAttr and, in doing so, removes the need store a shaped
type. The attribute now stores a size (number of elements), an MLIR type
as a discriminator, and a raw byte array.
The intent of DenseArrayAttr was not to be a drop-in replacement for DenseElementsAttr. It was meant to be a simple container of integers or floats that map to C++ types. The ElementsAttr implementation on DenseArrayAttr had many holes in it, and fixing those holes would require evolving DenseArrayAttr in a way that is incompatible with its original purpose.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D137606
Calculating the position of the region trailing objects isn't free,
given that it's the last trailing object, and inlining the size check
removes the need for users to explicitly add size checks for
micro-optimization.
This commit refactors attribute/type alias generation to be similar to how
we do it for operations, i.e. we generate aliases determined on what is
actually necessary when printing the IR (using a dummy printer for alias
collection). This allows for generating aliases only when necessary, and
also allows for proper propagation of when a nested alias can be deferred.
This also necessitated a fix for location parsing to actually parse aliases
instead of ignoring them.
Fixes#59041
Differential Revision: https://reviews.llvm.org/D138886
This adds an `enable` flag to OpPrintingFlags::enableDebugInfo
that allows for overriding any command line flags for debug printing,
and matches the format that we use for other `enableBlah` API.
We properly order dependencies between attribute/type aliases,
but we currently always print attribute aliases separately from type
aliases. This creates problems if an attribute wants to use a type
alias during printing.
This commit refactors alias collection such that attribute/type aliases
are collected together and printed together.
Differential Revision: https://reviews.llvm.org/D138162
We currently only support one level of aliases, which isn't great
in situations where an attribute/type can have multiple duplicated
components nested within it(e.g. debuginfo metadata). This commit
refactors alias generation to support nested aliases, which requires
changing alias grouping to take into account the depth of child
aliases, to ensure that attributes/types aren't printed before the
aliases they use.
The only real user facing change here was that we no longer print
0 as an alias suffix, which would be unnecessarily expensive to keep
in the new alias generation method (and isn't that valuable of a
behavior to preserve).
Differential Revision: https://reviews.llvm.org/D136541
This allows for using the llvm namespace cast methods instead of the ones on the Value class. The Value class method are kept for now, but we'll want to remove these eventually (with a really long lead time).
Related change: https://reviews.llvm.org/D134327
Differential Revision: https://reviews.llvm.org/D135870
This patch moves the 'printOp' functionality to the public API of
AsmPrinter and rename it to 'printCustomOrGenericOp'. No 'parseOp'
is needed at this time as existing APIs are able to parse operations
producing results where results are omitted in the textual form
(the LHS of an operation is redundant when it comes to building the
operation itself as it only contains the result names).
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D135006
(Re-Apply with fixes to clang MicrosoftMangle.cpp)
This is a first step towards high level representation for fp8 types
that have been built in to hardware with near term roadmaps. Like the
BFLOAT16 type, the family of fp8 types are inspired by IEEE-754 binary
floating point formats but, due to the size limits, have been tweaked in
various ways in order to maximally use the range/precision in various
scenarios. The list of variants is small/finite and bounded by real
hardware.
This patch introduces the E5M2 FP8 format as proposed by Nvidia, ARM,
and Intel in the paper: https://arxiv.org/pdf/2209.05433.pdf
As the more conformant of the two implemented datatypes, we are plumbing
it through LLVM's APFloat type and MLIR's type system first as a
template. It will be followed by the range optimized E4M3 FP8 format
described in the paper. Since that format deviates further from the
IEEE-754 norms, it may require more debate and implementation
complexity.
Given that we see two parts of the FP8 implementation space represented
by these cases, we are recommending naming of:
* `F8M<N>` : For FP8 types that can be conceived of as following the
same rules as FP16 but with a smaller number of mantissa/exponent
bits. Including the number of mantissa bits in the type name is enough
to fully specify the type. This naming scheme is used to represent
the E5M2 type described in the paper.
* `F8M<N>F` : For FP8 types such as E4M3 which only support finite
values.
The first of these (this patch) seems fairly non-controversial. The
second is previewed here to illustrate options for extending to the
other known variant (but can be discussed in detail in the patch
which implements it).
Many conversations about these types focus on the Machine-Learning
ecosystem where they are used to represent mixed-datatype computations
at a high level. At that level (which is why we also expose them in
MLIR), it is important to retain the actual type definition so that when
lowering to actual kernels or target specific code, the correct
promotions, casts and rescalings can be done as needed. We expect that
most LLVM backends will only experience these types as opaque `I8`
values that are applicable to some instructions.
MLIR does not make it particularly easy to add new floating point types
(i.e. the FloatType hierarchy is not open). Given the need to fully
model FloatTypes and make them interop with tooling, such types will
always be "heavy-weight" and it is not expected that a highly open type
system will be particularly helpful. There are also a bounded number of
floating point types in use for current and upcoming hardware, and we
can just implement them like this (perhaps looking for some cosmetic
ways to reduce the number of places that need to change). Creating a
more generic mechanism for extending floating point types seems like it
wouldn't be worth it and we should just deal with defining them one by
one on an as-needed basis when real hardware implements a new scheme.
Hopefully, with some additional production use and complete software
stacks, hardware makers will converge on a set of such types that is not
terribly divergent at the level that the compiler cares about.
(I cleaned up some old formatting and sorted some items for this case:
If we converge on landing this in some form, I will NFC commit format
only changes as a separate commit)
Differential Revision: https://reviews.llvm.org/D133823
This is a first step towards high level representation for fp8 types
that have been built in to hardware with near term roadmaps. Like the
BFLOAT16 type, the family of fp8 types are inspired by IEEE-754 binary
floating point formats but, due to the size limits, have been tweaked in
various ways in order to maximally use the range/precision in various
scenarios. The list of variants is small/finite and bounded by real
hardware.
This patch introduces the E5M2 FP8 format as proposed by Nvidia, ARM,
and Intel in the paper: https://arxiv.org/pdf/2209.05433.pdf
As the more conformant of the two implemented datatypes, we are plumbing
it through LLVM's APFloat type and MLIR's type system first as a
template. It will be followed by the range optimized E4M3 FP8 format
described in the paper. Since that format deviates further from the
IEEE-754 norms, it may require more debate and implementation
complexity.
Given that we see two parts of the FP8 implementation space represented
by these cases, we are recommending naming of:
* `F8M<N>` : For FP8 types that can be conceived of as following the
same rules as FP16 but with a smaller number of mantissa/exponent
bits. Including the number of mantissa bits in the type name is enough
to fully specify the type. This naming scheme is used to represent
the E5M2 type described in the paper.
* `F8M<N>F` : For FP8 types such as E4M3 which only support finite
values.
The first of these (this patch) seems fairly non-controversial. The
second is previewed here to illustrate options for extending to the
other known variant (but can be discussed in detail in the patch
which implements it).
Many conversations about these types focus on the Machine-Learning
ecosystem where they are used to represent mixed-datatype computations
at a high level. At that level (which is why we also expose them in
MLIR), it is important to retain the actual type definition so that when
lowering to actual kernels or target specific code, the correct
promotions, casts and rescalings can be done as needed. We expect that
most LLVM backends will only experience these types as opaque `I8`
values that are applicable to some instructions.
MLIR does not make it particularly easy to add new floating point types
(i.e. the FloatType hierarchy is not open). Given the need to fully
model FloatTypes and make them interop with tooling, such types will
always be "heavy-weight" and it is not expected that a highly open type
system will be particularly helpful. There are also a bounded number of
floating point types in use for current and upcoming hardware, and we
can just implement them like this (perhaps looking for some cosmetic
ways to reduce the number of places that need to change). Creating a
more generic mechanism for extending floating point types seems like it
wouldn't be worth it and we should just deal with defining them one by
one on an as-needed basis when real hardware implements a new scheme.
Hopefully, with some additional production use and complete software
stacks, hardware makers will converge on a set of such types that is not
terribly divergent at the level that the compiler cares about.
(I cleaned up some old formatting and sorted some items for this case:
If we converge on landing this in some form, I will NFC commit format
only changes as a separate commit)
Differential Revision: https://reviews.llvm.org/D133823
This is the corresponding method to
`OpAsmParser::parseOptionalLocationSpecifier` that prints a location
`loc(...)` based on the op printing flags. Together, these two functions
allow propagating user-level location info outside of their usual spots.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D134910
The three following ops in the memref dialect: transpose, expand_shape,
collapse_shape, have been originally designed to operate on memrefs with
strided layouts but had to go through the affine map representation as the type
did not support anything else. Make these ops produce memref values with
StridedLayoutAttr instead now that it is available.
Depends On D133938
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D133947
This patch adds a flag to `Attribute::print` that prints the attribute
without its type.
Fixes#57689
Reviewed By: rriddle, lattner
Differential Revision: https://reviews.llvm.org/D133822
This is necessary/useful for building generic tooling that can roundtrip external
resources without needing to explicitly handle them. For example, this allows
for viewing the resources encoded within a bytecode file without having to
explicitly know how to process them (e.g. making it easier to interact with a
reproducer encoded in bytecode).
Differential Revision: https://reviews.llvm.org/D133460
Resources are encoded in two separate sections similarly to
attributes/types, one for the actual data and one for the data
offsets. Unlike other sections, the resource sections are optional
given that in many cases they won't be present. For testing,
bytecode serialization is added for DenseResourceElementsAttr.
Differential Revision: https://reviews.llvm.org/D132729
This allows for extracting assembly information when printing an attribute
or type, such as the dialect resources referenced. This functionality is used in
a followup that adds resource support to the bytecode. This change also results
in a nice cleanup of AsmPrinter now that we don't need to awkwardly workaround
optional AsmStates.
Differential Revision: https://reviews.llvm.org/D132728
This patch makes parsing dense arrays with type elision work properly.
If a ranked tensor type is supplied to `parseAttribute` on a dense
array, the element type is skipped. Moreover, if type elision is set to
`AttrTypeElision::Must`, the element type is elided.
For example, this allows
```
memref.global @z : memref<3xi32> = array<1, 2, 3>
```
Fixes#57433
Depends on D132758
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D132964
This patch turns `DenseArrayBaseAttr` into a fully-functional attribute by
adding a generic parser and printer, supporting bool or integer and floating
point element types with bitwidths divisible by 8. It has been renamed
to `DenseArrayAttr`. The patch maintains the specialized subclasses,
e.g. `DenseI32ArrayAttr`, which remain the preferred API for accessing
elements in C++.
This allows `DenseArrayAttr` to hold signed and unsigned integer elements:
```
array<si8: -128, 127>
array<ui8: 255>
```
"Exotic" floating point elements:
```
array<bf16: 1.2, 3.4>
```
And integers of other bitwidths:
```
array<i24: 8388607>
```
Reviewed By: rriddle, lattner
Differential Revision: https://reviews.llvm.org/D132758
Introduce a new attribute to represent the strided memref layout. Strided
layouts are omnipresent in code generation flows and are the only kind of
layouts produced and supported by a half of operation in the memref dialect
(view-related, shape-related). However, they are internally represented as
affine maps that require a somewhat fragile extraction of the strides from the
linear form that also comes with an overhead. Furthermore, textual
representation of strided layouts as affine maps is difficult to read: compare
`affine_map<(d0, d1, d2)[s0, s1] -> (d0*32 + d1*s0 + s1 + d2)>` with
`strides: [32, ?, 1], offset: ?`. While a rudimentary support for parsing a
syntactically sugared version of the strided layout has existed in the codebase
for a long time, it does not go as far as this commit to make the strided
layout a first-class attribute in the IR.
This introduces the attribute and updates the tests that using the pre-existing
sugared form to use the new attribute instead. Most memref created
programmatically, e.g., in passes, still use the affine form with further
extraction of strides and will be updated separately.
Update and clean-up the memref type documentation that has gotten stale and has
been referring to the details of affine map composition that are long gone.
See https://discourse.llvm.org/t/rfc-materialize-strided-memref-layout-as-an-attribute/64211.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D132864