Fixes incorrect logic that went unnoticed until the function was tested
with output and input types that have the same underlying floating-point
format.
This PR aims to add the groundwork to test the precision of libc complex
functions against MPC. I took `cargf` as a test to verify that the infra
works fine.
- Implementation of `tan` for 16-bit floating point inputs scaled by pi.
i.e,. `tanpif16()`
- Implementation of Tanpi in MPFRWrapper for MPFR versions < 4.2
- Exhaustive tests for `tanpif16()`
Implementation of `cos` for half precision floating point inputs scaled
by pi (i.e., `cospi`), correctly rounded for all rounding modes.
---------
Co-authored-by: OverMighty <its.overmighty@gmail.com>
- added all variations of ffma and fdiv
- will add all new headers into yaml for next patch
- only fsub is left then all basic operations for float is complete
---------
Co-authored-by: OverMighty <its.overmighty@gmail.com>
Fixes https://github.com/llvm/llvm-project/issues/92874
Algorithm: Let `x = (-1)^s * 2^e * (1 + m)`.
- Step 1: Range reduction: reduce the exponent with:
```
y = cbrt(x) = (-1)^s * 2^(floor(e/3)) * 2^((e % 3)/3) * (1 + m)^(1/3)
```
- Step 2: Use the first 4 bit fractional bits of `m` to look up for a
degree-7 polynomial approximation to:
```
(1 + m)^(1/3) ~ 1 + m * P(m).
```
- Step 3: Perform the multiplication:
```
2^((e % 3)/3) * (1 + m)^(1/3).
```
- Step 4: Check for exact cases to prevent rounding and clear
`FE_INEXACT` floating point exception.
- Step 5: Combine with the exponent and sign before converting down to
`float` and return.
I also fixed a comment in sinpif.cpp in the first commit. Should this be
included in this PR?
All tests were passed, including the exhaustive test.
CC: @lntue
Context: https://github.com/llvm/llvm-project/pull/87017
- Add proxy header `libc/hdr/math_macros.h` that will:
- include `<math.h>` in overlay mode,
- include `"include/llvm-libc-macros/math-macros.h"` in full build mode.
- Its corresponding CMake target `libc.hdr.math_macros` will only depend
on `libc.include.math` and `libc.include.llvm-libc-macros.math_macros`
in full build mode.
- Replace all `#include "include/llvm-libc-macros/math-macros.h"` with
`#include "hdr/math_macros.h"`.
- Add dependency to `libc.hdr.math_macros` CMake target when using
`add_fp_unittest`.
- Update the remaining dependency.
- Update bazel overlay: add `libc:hdr_math_macros` target, and replacing
all dependency on `libc:llvm_libc_macros_math_macros` with
`libc:hdr_math_macros`.
Implements the functions `roundeven()`, `roundevenf()`, `roundevenl()`
from the roundeven family of functions introduced in C23. Also
implements `roundevenf128()`.
We compute atan2f(y, x) in 2 stages:
- Fast step: perform computations in double precision , with relative
errors < 2^-50
- Accurate step: if the result from the Fast step fails Ziv's rounding
test, then we perform computations in double-double precision, with
relative errors < 2^-100.
On Ryzen 5900X, worst-case latency is ~ 200 clocks, compared to average
latency ~ 60 clocks, and average reciprocal throughput ~ 20 clocks.
Reland of #84991
A downstream overlay mode user ran into issues with the isnan macro not
working in our sources with a specific libc configuration. This patch
replaces the last direct includes of math.h with our internal
math_macros.h, along with the necessary build system changes.
The semantics for casting can range from "bitcast" (same representation)
to "different representation", to "type promotion". Here we remove the
cast operator and force usage of `get_val` as the only function to get
the floating point value, making the intent clearer and more consistent.
This one might be a bit controversial since the terminology has been
introduced from the start but I think `FRACTION_LEN` is a better name
here. AFAICT it really is "the number of bits after the decimal dot when
the number is in normal form."
`MANTISSA_WIDTH` is less precise as it's unclear whether we take the
leading bit into account.
This patch also renames most of the properties to use the `_LEN` suffix
and fixes useless casts or variables.
According to [wikipedia](https://en.wikipedia.org/wiki/Exponent_bias)
the "biased exponent" is the encoded form that is always positive
whereas the unbiased form is the actual "real" exponent that can be
positive or negative.
`FPBits` seems to be using `unbiased_exponent` to describe the encoded
form (unsigned). This patch simply use `biased` instead of `unbiased`.
`PlatformDefs.h` does not bring a lot of value as a separate file.
It is transitively included in `FloatProperties.h` and `FPBits.h`. This
patch sinks it into `FloatProperties.h` and removes the associated build
targets.