This commit has introduced test failures in internal google tests.
Working theory is they are caused by a genuine problem in the patch
which gets tripped by some debug info from system libraries.
Reverting while we try to reproduce the problem in a self-contained
fashion.
This reverts commit 601168e420.
Separates the methods for recursive variable parsing in function
context and non-recursive parsing of global variables.
Differential Revision: https://reviews.llvm.org/D110570
In all these years, we haven't found a use for this function (it has
zero callers). Lets just remove the boilerplate.
Differential Revision: https://reviews.llvm.org/D109600
When going through the CU entries in the name index,
make sure to compare the name entry's CU
offset against the skeleton CU's offset.
Previously there would be a mismatch, since the
wrong offset was compared, and thus no suitable
entry was found.
Reviewed By: jankratochvil
Differential Revision: https://reviews.llvm.org/D106270
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Testcases now require Linux as it is needed for -gsplit-dwarf.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
This patch adds the ability to get a DWARFDIE's children as an LLVM range.
This way we can use for range loops to iterate over them and we can use LLVM's
algorithms like `llvm::all_of` to query all children.
The implementation has to do some small shenanigans as the iterator needs to
store a DWARFDIE, but a DWARFDIE container is also a DWARFDIE so it can't return
the iterator by value. I just made the `children` getter a templated function to
avoid the cyclic dependency.
Reviewed By: #lldb, werat, JDevlieghere
Differential Revision: https://reviews.llvm.org/D103172
when dealing with -gmodules debug info.
This fixes the bot failures on Darwin.
A recent clang change (presumably https://reviews.llvm.org/D104291)
introduced a bug where .pcm files would identify themselves as
DW_LANG_C_plus_plus, but the .o that references them would identify as
DW_LANG_C_plus_plus_14. While that bug needs to be fixed, too, it
shows that the current strict comparison also isn't meaningful.
rdar://79423225
The `lock` call directly will check for us if the `weak_ptr` is expired and
returns an invalid `shared_ptr` (which we correctly handle), so this check is
redundant.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D103442
The C headers are deprecated so as requested in D102845, this is replacing them
all with their (not deprecated) C++ equivalent.
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D103084
This patch refactors a good part of the code base turning the usual
FileSpec, Line, Column, CheckInlines, ExactMatch arguments into a
SourceLocationSpec object.
This change is required for a following patch that will add handling of the
column line information when doing symbol resolution.
Differential Revision: https://reviews.llvm.org/D100965
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
DWARF allows .dwo file paths to be relative rather than absolute. When
they are relative, DWARF uses DW_AT_comp_dir to find the .dwo
file. DW_AT_comp_dir can also be relative, making the entire search
patch for the .dwo file relative. In this case, LLDB currently
searches relative to its current working directory, i.e. the directory
from which the debugger was launched. This is not right, as the
compiler, which generated the relative paths, can have no idea where
the debugger will be launched. The correct thing is to search relative
to the location of the executable binary. That is what this patch
does.
Differential Revision: https://reviews.llvm.org/D97786
DWARF allows .dwo file paths to be relative rather than absolute. When
they are relative, DWARF uses DW_AT_comp_dir to find the .dwo
file. DW_AT_comp_dir can also be relative, making the entire search
patch for the .dwo file relative. In this case, LLDB currently
searches relative to its current working directory, i.e. the directory
from which the debugger was launched. This is not right, as the
compiler, which generated the relative paths, can have no idea where
the debugger will be launched. The correct thing is to search relative
to the location of the executable binary. That is what this patch
does.
Differential Revision: https://reviews.llvm.org/D97786
When LLVM error handling was introduced to the parsing of the .debug_aranges it would cause major issues if any DWARFDebugArangeSet::extract() calls returned any errors. The code in DWARFDebugInfo::GetCompileUnitAranges() would end up calling DWARFDebugAranges::extract() which would return an error if _any_ DWARFDebugArangeSet had any errors, but it default constructed a DWARFDebugAranges object into DWARFDebugInfo::m_cu_aranges_up and populated it partially, and returned an error prior to finishing much needed functionality in the DWARFDebugInfo::GetCompileUnitAranges() function. Subsequent callers to this function would see that the DWARFDebugInfo::m_cu_aranges_up was actually valid and return this partially populated DWARFDebugAranges reference _and_ it would not be sorted or minimized.
This above bugs would cause an incomplete .debug_aranges parsing, it would skip manually parsing any compile units for ranges, and would not sort the DWARFDebugAranges in m_cu_aranges_up.
This bug would also cause breakpoints set by file and line to fail to set correctly if a symbol context for an address could not be resolved properly, which the incomplete and unsorted DWARFDebugAranges object that DWARFDebugInfo::GetCompileUnitAranges() returned would cause symbol context lookups resolved by address (breakpoint address) to fail to find any DWARF debug info for a given address.
This patch fixes all of the issues that I found:
- DWARFDebugInfo::GetCompileUnitAranges() no longer returns a "llvm::Expected<DWARFDebugAranges &>", but just returns a "const DWARFDebugAranges &". Why? Because this code contained a fallback that would parse all of the valid DWARFDebugArangeSet objects, and would check which compile units had valid .debug_aranges set entries, and manually build an address ranges table using DWARFUnit::BuildAddressRangeTable(). If we return an error because any DWARFDebugArangeSet has any errors, then we don't do any of this code. Now we parse all DWARFDebugArangeSet objects that have no errors, if any calls to DWARFDebugArangeSet::extract() return errors, we skip that DWARFDebugArangeSet so that we can use the fallback call to DWARFUnit::BuildAddressRangeTable(). Since DWARFDebugInfo::GetCompileUnitAranges() needs to parse what it can from the .debug_aranges and build address ranges tables for any compile units that don't have any .debug_aranges sets, everything now works as expected.
- Fix an issue where a DWARFDebugArangeSet contains multiple terminator entries. The LLVM parser and llvm-dwarfdump properly warn about this because it happens with linux compilers and linkers and was the original cause of the bug I am fixing here. We now correctly warn about this issue if "log enable dwarf info" is enabled, but we continue to parse the DWARFDebugArangeSet correctly so we don't lose data that is contained in the .debug_aranges section.
- DWARFDebugAranges::extract() no longer returns a llvm::Error because we need to be able to parse all of the valid DWARFDebugArangeSet objects. It also will correctly skip a DWARFDebugArangeSet object that has errors in the middle of the stream by setting the start offsets of each DWARFDebugArangeSet to be calculated by the previous DWARFDebugArangeSet::extract() calculated offset that uses the header which contains the length of the DWARFDebugArangeSet. This means if do we run into real errors while parsing individual DWARFDebugArangeSet objects, we can continue to parse the rest of the validly encoded DWARFDebugArangeSet objects in the .debug_aranges section. This will allow LLDB to parse DWARF that contains a possibly newer .debug_aranges set format than LLDB currently supports because we will error out for the parsing of the DWARFDebugArangeSet, but be able to skip to the next DWARFDebugArangeSet object using the "DWARFDebugArangeSet.m_header.length" field to calculate the next starting offset.
Tests were added to cover all new functionality.
Differential Revision: https://reviews.llvm.org/D99401
LLDB can often appear deadlocked to users that use IDEs when it is indexing DWARF, or parsing symbol tables. These long running operations can make a debug session appear to be doing nothing even though a lot of work is going on inside LLDB. This patch adds a public API to allow clients to listen to debugger events that report progress and will allow UI to create an activity window or display that can show users what is going on and keep them informed of expensive operations that are going on inside LLDB.
Differential Revision: https://reviews.llvm.org/D97739
SymbolFileDWARF::ResolveSymbolContext is currently unaware that in DWARF5 the primary file is specified at file index 0. As a result it misses to correctly resolve the symbol context for the primary file when DWARF5 debug data is used and the primary file is only specified at index 0.
This change makes use of CompileUnit::ResolveSymbolContext to resolve the symbol context. The ResolveSymbolContext in CompileUnit has been previously already updated to reflect changes in DWARF5
and contains a more readable version. It can resolve more, but will also do a bit more work than
SymbolFileDWARF::ResolveSymbolContext (getting the Module, and going through SymbolFileDWARF::ResolveSymbolContextForAddress), however, it's mostly directed by $resolve_scope
what will be resolved, and ensures that code is easier to maintain if there's only one path.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D98619
Apply changes from https://reviews.llvm.org/D91014 to other places where DWARF entries are being processed.
Test case is provided by @jankratochvil.
The test is marked to run only on x64 and exclude Windows and Darwin, because the assembly is not OS-independent.
(First attempt https://reviews.llvm.org/D96778 broke the build bots)
Reviewed By: jankratochvil
Differential Revision: https://reviews.llvm.org/D97765
The comment for ValueType claims that all values <1 are errors, but
not all switch statements take this into account. This patch
introduces an explicit Error case and deletes all default: cases, so
we get warned about incomplete switch coverage.
https://reviews.llvm.org/D96537
Finishing out the support (to the best of my knowledge/based on current
testing running the whole check-lldb with a clang forcibly using
DW_AT_ranges on all DW_TAG_subprograms) for this feature.
Differential Revision: https://reviews.llvm.org/D94064
This patch introduces a LLDB_SCOPED_TIMER macro to hide the needlessly
repetitive creation of scoped timers in LLDB. It's similar to the
LLDB_LOG(F) macro.
Differential revision: https://reviews.llvm.org/D93663
I found a few cases where entries in the debug_line for a specific line of code have invalid entries (the address is outside of a code section or no section at all) and also valid entries. When this happens lldb might not set the breakpoint because the first line entry it will find in the line table might be the invalid one and since it's range is "invalid" no location is resolved. To get around this I changed the way we parse the line sequences to ignore those starting at an address under the first code segment.
Greg suggested to implement it this way so we don't need to check all sections for every line sequence.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D87172
Current user_id_t format is:
63{isDebugTypes} 62..32{dwo || 7fffffff}
31..0 {die_offset}
while current DIERef format is (I have made up the bit positions but the
field widths do match):
63{m_section==isDebugTypes} 62{m_dwo_num_valid} 61..32{m_dwo_num}
31..0 {m_die_offset}
Proposing to change user_id_t to:
63{isDebugTypes} 62{dwo_is_valid} 61..32{dwo; 0 if !valid}
31..0 {die_offset}
There is no benefit of having 31-bits wide dwo_num in user_id_t when it
gets converted to 30-bits width in DIERef.
This patch is for future DWZ patchset which extends the dwo_is_valid bit
into a 2-bit field (normal, DWO, DWZ, DWZcommon) so that both user_id_t
and DIERef can be changed then the same way.
It would be best to somehow unify user_id_t and DIERef but I do not plan
to do that. user_id_t should probably remain a number for the Python API
compatibility while there still needs to be some class with all the
methods to access it.
SymbolFileDWARF::GetDwpSymbolFile() and SymbolFileDWARF::GetDIE use
0x3fffffff for DWP but that does not clash:
formerly:
31bits32..62:0x7fffffff = normal unit / not any DWO
31bits32..62:0x3fffffff = DWP
31bits32..62:others = DWO unit number
after this patch:
bit62=0 30bits32..61:any = normal unit / not any DWO
bit62=1 30bits32..61:0x3fffffff = DWP
bit62=1 30bits32..61:others = DWO unit number
Differential Revision: https://reviews.llvm.org/D90413
SymbolFileDWARF::GetTypes was not handling dwo correctly. The fix is
simple -- adding a GetNonSkeletonUnit call -- but I've snuck in a small
refactor as well.
LookupAddress makes no sense for DWARFTypeUnit.
Also make GetNonSkeletonUnit to preserve the called type.
Differential Revision: https://reviews.llvm.org/D89646
Only SymbolFileDWARF::ParseCompileUnit creates a CompileUnit and it uses
DWARFCompileUnit for that.
Differential Revision: https://reviews.llvm.org/D89165
Class-level static constexpr variables can have both DW_AT_const_value
(in the "declaration") and a DW_AT_location (in the "definition")
attributes. Our code was trying to handle this, but it was brittle and
hard to follow (and broken) because it was processing the attributes in
the order in which they were found.
Refactor the code to make the intent clearer -- DW_AT_location trumps
DW_AT_const_value, and fix the bug which meant that we were not
displaying these variables properly (the culprit was the delayed parsing
of the const_value attribute due to a need to fetch the variable type.
Differential Revision: https://reviews.llvm.org/D86615
This fixes several issues in handling of DW_AT_const_value attributes:
- the first is that the size of the data given by data forms does not
need to match the size of the underlying variable. We already had the
case to handle this for DW_FORM_(us)data -- this extends the handling
to other data forms. The main reason this was not picked up is because
clang uses leb forms in these cases while gcc prefers the fixed-size
ones.
- The handling of DW_AT_strp form was completely broken -- we would end
up using the pointer value as the result. I've reorganized this code
so that it handles all string forms uniformly.
- In case of a completely bogus form we would crash due to
strlen(nullptr).
Depends on D86311.
Differential Revision: https://reviews.llvm.org/D86348
This patch has no effect for C and C++. In more dynamic languages,
such as Objective-C and Swift GetByteSize() needs to call into the
language runtime, so it's important to pass one in where possible. My
primary motivation for this is some work I'm doing on the Swift
branch, however, it looks like we are also seeing warnings in
Objective-C that this may resolve. Everything in the SymbolFile
hierarchy still passes in nullptrs, because we don't have an execution
context in SymbolFile, since SymbolFile transcends processes.
Differential Revision: https://reviews.llvm.org/D84267
Summary:
With D81784, lld has started debug info resolving relocations to
garbage-collected symbols as -1 (instead of relocation addend). For an
unaware consumer this generated sequences which seemingly wrap the
address space -- their first entry was 0xfffff, but all other entries
were low numbers.
Lldb stores line sequences concatenated into one large vector, sorted by
the first entry, and searched with std::lower_bound. This resulted in
the low-value entries being placed at the end of the vector, which
utterly confused the lower_bound algorithm, and caused it to not find a
match. (Previously, these sequences would be at the start of the vector,
and normally would contain addresses that are far smaller than any real
address we want to look up, so std::lower_bound was fine.)
This patch makes lldb ignore these kinds of sequences completely. It
does that by changing the construction algorithm from iterating over the
rows (as parsed by llvm), to iterating over the sequences. This is
important because the llvm parsed performs validity checks when
constructing the sequence array, whereas the row array contains raw
data.
Reviewers: JDevlieghere, MaskRay
Differential Revision: https://reviews.llvm.org/D83957
Summary:
DWARF-parsing methods in SymbolFileDWARF which update module state
typically take the module lock. ParseCallEdgesInFunction doesn't do
this, but higher-level locking within lldb::Function (which owns the
storage for parsed call edges) is necessary.
The lack of locking could explain some as-of-yet unreproducible crashes
which occur in Function::GetTailCallingEdges(). In these crashes, the
`m_call_edges` vector is non-empty but contains a nullptr, which
shouldn't be possible. (If this vector is non-empty, it _must_ contain a
non-null unique_ptr.)
This may address rdar://55622443 and rdar://65119458.
Reviewers: jasonmolenda, friss, jingham
Subscribers: aprantl, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D83359
Prior to my patch of using the LLVM line table parsing code,
SymbolFileDWARF::ParseSupportFiles would only parse the line table
prologues to get the file list for any files that could be in the line
table.
With the old behavior, if we found the file that someone is setting the
breakpoint in in the support files list, we would get a valid index. If
we didn't, we would not look any further. So someone sets a breakpoint
one "MyFile.cpp:12" and if we find "MyFile.cpp" in the support file list
for the compile unit, then and only then would we get the entire line
table for that compile unit.
With the current behavior, no matter what, we always fully parse the
line table for all compile units any time any file and line breakpoint
is set. This creates a serious problem when debugging a large DWARF in
.o file project.
This patch re-instates the old behavior. Unfortunately it means we might
end up parsing to prologue twice, but I don't think that outweighs the
cost of trying to cache/reuse it.
Differential revision: https://reviews.llvm.org/D81589
D80519 <https://reviews.llvm.org/D80519>
added support for `DW_TAG_GNU_call_site` but
Bug 45886 <https://bugs.llvm.org/show_bug.cgi?id=45886>
found one case did not work.
There is:
0x000000b1: DW_TAG_GNU_call_site
DW_AT_low_pc (0x000000000040111e)
DW_AT_abstract_origin (0x000000cc "a")
...
0x000000cc: DW_TAG_subprogram
DW_AT_name ("a")
DW_AT_prototyped (true)
DW_AT_low_pc (0x0000000000401109)
^^^^^^^^^^^^ - here it did overwrite the 'low_pc' variable containing value 0x40111e we wanted
DW_AT_high_pc (0x0000000000401114)
DW_AT_frame_base (DW_OP_call_frame_cfa)
DW_AT_GNU_all_call_sites (true)
DW_TAG_GNU_call_site attributes order as produced by GCC:
0x000000b1: DW_TAG_GNU_call_site
DW_AT_low_pc (0x000000000040111e)
DW_AT_abstract_origin (0x000000cc "a")
clang produces the attributes in opposite order:
0x00000064: DW_TAG_GNU_call_site
DW_AT_abstract_origin (0x0000002a "a")
DW_AT_low_pc (0x0000000000401146)
Differential Revision: https://reviews.llvm.org/D81334
Summary:
The way that the support for the GNU dialect of tail call frames was
implemented in D80519 meant that the were reporting very bogus PC values
which pointed into the middle of an instruction: the -1 trick is
necessary for the address to resolve to the right function, but we
should still be reporting a more realistic PC value -- I say "realistic"
and not "real", because it's very debatable what should be the correct
PC value for frames like this.
This patch achieves that my moving the -1 from SymbolFileDWARF into the
stack frame computation code. The idea is that SymbolFileDWARF will
merely report whether it has provided an address of the instruction
after the tail call, or the address of the call instruction itself. The
StackFrameList machinery uses this information to set the "behaves like
frame zero" property of the artificial frames (the main thing this flag
does is it controls the -1 subtraction when looking up the function
address).
This required a moderate refactor of the CallEdge class, because it was
implicitly assuming that edges pointing after the call were real calls
and those pointing the the call insn were tail calls. The class now
carries this information explicitly -- it carries three mostly
independent pieces of information:
- an address of interest in the caller
- a bit saying whether this address points to the call insn or after it
- whether this is a tail call
Reviewers: vsk, dblaikie
Subscribers: aprantl, mgrang, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D81010
Summary:
The code changes are very straight-forward -- just handle both DW_AT_GNU
and DW_AT_call versions of all tags and attributes. There is just one
small gotcha: in the GNU version, DW_AT_low_pc was used both for the
"return pc" and the "call pc" values, depending on whether the tag was
describing a tail call, while the official scheme uses different
attributes for the two things.
Reviewers: vsk, dblaikie
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D80519