We have several ways to materialize sparse tensors (new and convert) but no explicit operation to release the underlying sparse storage scheme at runtime (other than making an explicit delSparseTensor() library call). To simplify memory management, a sparse_tensor.release operation has been introduced that lowers to the runtime library call while keeping tensors, opague pointers, and memrefs transparent in the initial IR.
*Note* There is obviously some tension between the concept of immutable tensors and memory management methods. This tension is addressed by simply stating that after the "release" call, no further memref related operations are allowed on the tensor value. We expect the design to evolve over time, however, and arrive at a more satisfactory view of tensors and buffers eventually.
Bug:
http://llvm.org/pr52046
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D111099
The former is redundant because the later carries it as part of
its builder. Add a getContext() helper method to DialectAsmParser
to make this more convenient, and stop passing the context around
explicitly. This simplifies ODS generated parser hooks for attrs
and types.
This resolves PR51985
Recommit 4b32f8bac4 after fixing a dependency.
Differential Revision: https://reviews.llvm.org/D110796
The former is redundant because the later carries it as part of
its builder. Add a getContext() helper method to DialectAsmParser
to make this more convenient, and stop passing the context around
explicitly. This simplifies ODS generated parser hooks for attrs
and types.
This resolves PR51985
Differential Revision: https://reviews.llvm.org/D110796
The lack of negi details leaked from merger class into codegen part.
Also, special case for vector code was not needed, the type can be used directly!
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D110677
This revision makes sure that when the output buffer materializes locally
(in contrast with the passing in of output tensors either in-place or not
in-place), the zero initialization assumption is preserved. This also adds
a bit more documentation on our sparse kernel assumption (viz. TACO
assumptions).
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D110442
The sparse constant provides a constant tensor in coordinate format. We first split the sparse constant into a constant tensor for indices and a constant tensor for values. We then generate a loop to fill a sparse tensor in coordinate format using the tensors for the indices and the values. Finally, we convert the sparse tensor in coordinate format to the destination sparse tensor format.
Add tests.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D110373
This has been a TODO for a long time, and it brings about many advantages (namely nice accessors, and less fragile code). The existing overloads that accept ArrayRef are now treated as deprecated and will be removed in a followup (after a small grace period). Most of the upstream MLIR usages have been fixed by this commit, the rest will be handled in a followup.
Differential Revision: https://reviews.llvm.org/D110293
When generating code to add an element to SparseTensorCOO (e.g., when doing dense=>sparse conversion), we used to check for nonzero values on the runtime side, whereas now we generate MLIR code to do that check.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D110121
This test makes sure kernels map to efficient sparse code, i.e. all
compressed for-loops, no co-iterating while loops. In addition, this
revision removes the special constant folding inside the sparse
compiler in favor of Mahesh' new generic linalg folding. Thanks!
NOTE: relies on Mahesh fix, which needs to be rebased first
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D110001
Now not just SUM, but also PRODUCT, AND, OR, XOR. The reductions
MIN and MAX are still to be done (also depends on recognizing
these operations in cmp-select constructs).
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D110203
This change adds automatic wrapper functoins with emit_c_interface
to all methods in the sparse support library that deal with MEMREFs.
The wrappers will take care of passing MEMREFs by value internally
and by pointer externally, thereby avoiding ABI issues across platforms.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D110219
Note that this revision adds a very tiny bit of constant folding in the
sparse compiler lattice construction. Although I am generally trying to
avoid such canonicalizations (and rely on other passes to fix this instead),
the benefits of avoiding a very expensive disjunction lattice construction
justify having this special code (at least for now).
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D109939
This enables the sparsification of more kernels, such as convolutions
where there is a x(i+j) subscript. It also enables more tensor invariants
such as x(1) or other affine subscripts such as x(i+1). Currently, we
reject sparsity altogether for such tensors. Despite this restriction,
however, we can already handle a lot more kernels with compound subscripts
for dense access (viz. convolution with dense input and sparse filter).
Some unit tests and an integration test demonstrate new capability.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D109783
Further enhance the set of operations that can be handled by the sparse compiler
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D109413
The sparse index order must always be satisfied, but this
may give a choice in topsorts for several cases. We broke
ties in favor of any dense index order, since this gives
good locality. However, breaking ties in favor of pushing
unrelated indices into sparse iteration spaces gives better
asymptotic complexity. This revision improves the heuristic.
Note that in the long run, we are really interested in using
ML for ML to find the best loop ordering as a replacement for
such heuristics.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D109100
SymbolRefAttr is fundamentally a base string plus a sequence
of nested references. Instead of storing the string data as
a copies StringRef, store it as an already-uniqued StringAttr.
This makes a lot of things simpler and more efficient because:
1) references to the symbol are already stored as StringAttr's:
there is no need to copy the string data into MLIRContext
multiple times.
2) This allows pointer comparisons instead of string
comparisons (or redundant uniquing) within SymbolTable.cpp.
3) This allows SymbolTable to hold a DenseMap instead of a
StringMap (which again copies the string data and slows
lookup).
This is a moderately invasive patch, so I kept a lot of
compatibility APIs around. It would be nice to explore changing
getName() to return a StringAttr for example (right now you have
to use getNameAttr()), and eliminate things like the StringRef
version of getSymbol.
Differential Revision: https://reviews.llvm.org/D108899
Rationale:
Passing in a pointer to the memref data in order to implement the
dense to sparse conversion was a bit too low-level. This revision
improves upon that approach with a cleaner solution of generating
a loop nest in MLIR code itself that prepares the COO object before
passing it to our "swiss army knife" setup. This is much more
intuitive *and* now also allows for dynamic shapes.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D108491
Apply the "for loop peeling" pattern from SCF dialect transforms. This pattern splits scf.for loops into full and partial iterations. In the full iteration, all masked loads/stores are canonicalized to unmasked loads/stores.
Differential Revision: https://reviews.llvm.org/D107733
This shares more code with existing utilities. Also, to be consistent,
we moved dimension permutation on the DimOp to the tensor lowering phase.
This way, both pre-existing DimOps on sparse tensors (not likely but
possible) as well as compiler generated DimOps are handled consistently.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D108309
Implements lowering dense to sparse conversion, for static tensor types only.
First step towards general sparse_tensor.convert support.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D107681
Introduces a conversion from one (sparse) tensor type to another
(sparse) tensor type. See the operation doc for details. Actual
codegen for all cases is still TBD.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D107205
The order of testing in two sparse tensor ops was incorrect,
which could cause an invalid cast (crashing the compiler instead
of reporting the error). This revision fixes that bug.
Reviewed By: gussmith23
Differential Revision: https://reviews.llvm.org/D106841
Removed inconsistent name prefixes, added consistency checks
on debug strings, added more assertions to verify assumptions
that may be lifted in the future.
Reviewed By: gussmith23
Differential Revision: https://reviews.llvm.org/D106108
This format was missing from the support library. Although there are some
subtleties reading in an external format for int64 as double, there is no
good reason to omit support for this data type form the support library.
Reviewed By: gussmith23
Differential Revision: https://reviews.llvm.org/D106016
Arbitrary shifts have some complications, but shift by invariants
(viz. tensor index exp only at left hand side) can be easily
handled with the conjunctive rule.
Reviewed By: gussmith23
Differential Revision: https://reviews.llvm.org/D106002
Adds zero-preserving unary operators from std. Also adds xor.
Performs minor refactoring to remove "zero" node, and pushed
the irregular logic for negi (not support in std) into one place.
Reviewed By: gussmith23
Differential Revision: https://reviews.llvm.org/D105928
Integral AND and OR follow the simple conjunction and disjuction rules
for lattice building. This revision also completes some of the Merge
refactoring by moving the remainder parts that are merger specific from
sparsification into utils files.
Reviewed By: gussmith23
Differential Revision: https://reviews.llvm.org/D105851
Right now, we only accept x/c with nonzero c, since this
conceptually can be treated as a x*(1/c) conjunction for both
FP and INT as far as lattice computations go. The codegen
keeps the division though to preserve precise semantics.
See discussion:
https://llvm.discourse.group/t/sparse-tensors-in-mlir/3389/28
Reviewed By: gussmith23
Differential Revision: https://reviews.llvm.org/D105731
Remove `getDynOperands` and `createOrFoldDimOp` from MemRef.h to decouple MemRef a bit from Tensor. These two functions are used in other dialects/transforms.
Differential Revision: https://reviews.llvm.org/D105260
This revision extends the sparse compiler support from fp/int addition and multiplication to fp/int negation and subtraction, thereby increasing the scope of sparse kernels that can be compiled.
Reviewed By: gussmith23
Differential Revision: https://reviews.llvm.org/D105306
To make TensorExp clearer, this change refactors the e0/e1 fields into a union: e0/e1 for a binary op tensor expression, and tensor_num for a tensor-kinded tensor expression.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D105303
Rationale:
Follow-up on migrating lattice and tensor expression related methods into the new utility.
This also prepares the next step of generalizing the op kinds that are handled.
Reviewed By: gussmith23
Differential Revision: https://reviews.llvm.org/D105219
* Split memref.dim into two operations: memref.dim and tensor.dim. Both ops have the same builder interface and op argument names, so that they can be used with templates in patterns that apply to both tensors and memrefs (e.g., some patterns in Linalg).
* Add constant materializer to TensorDialect (needed for folding in affine.apply etc.).
* Remove some MemRefDialect dependencies, make some explicit.
Differential Revision: https://reviews.llvm.org/D105165
* Previously, we were only generating .h.inc files. We foresee the need to also generate implementations and this is a step towards that.
* Discussed in https://llvm.discourse.group/t/generating-cpp-inc-files-for-dialects/3732/2
* Deviates from the discussion above by generating a default constructor in the .cpp.inc file (and adding a tablegen bit that disables this in case if this is user provided).
* Generating the destructor started as a way to flush out the missing includes (produces a link error), but it is a strict improvement on its own that is worth doing (i.e. by emitting key methods in the .cpp file, we root vtables in one translation unit, which is a non-controversial improvement).
Differential Revision: https://reviews.llvm.org/D105070
Moves iteration lattice/merger code into new SparseTensor/Utils directory. A follow-up CL will add lattice/merger unit tests.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D104757