Examples:
i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1
i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1
This is a small generalization of a fold requested in PR43650:
https://bugs.llvm.org/show_bug.cgi?id=43650
The sign-bit of the condition operand can be used as a mask for the true operand:
https://rise4fun.com/Alive/paT
Note that we already handle some of the patterns (isNegative + scalar) because
there's an over-specialized, yet over-reaching fold for that in foldSelectCCToShiftAnd().
It doesn't use any TLI hooks, so I can't easily rip out that code even though we're
duplicating part of it here. This fold is guarded by TLI.convertSelectOfConstantsToMath(),
so it should not cause problems for targets that prefer select over shift.
Also worth noting: I thought we could generalize this further to include the case where
the true operand of the select is not constant, but Alive says that may allow poison to
pass through where it does not in the original select form of the code.
Differential Revision: https://reviews.llvm.org/D68949
llvm-svn: 374902
The diffs suggest that we are missing some more basic
analysis/transforms, but this keeps the vector path in
sync with the scalar (rL374397). This is again a
preliminary step for introducing the reverse transform
in IR as proposed in D63382.
llvm-svn: 374555
This reverses the scalar canonicalization proposed in D63382.
Pre: isPowerOf2(C1)
%r = select i1 %cond, i32 C1, i32 0
=>
%z = zext i1 %cond to i32
%r = shl i32 %z, log2(C1)
https://rise4fun.com/Alive/Z50
x86 already tries to fold this pattern, but it isn't done
uniformly, so we still see a diff. AArch64 probably should
enable the TLI hook to benefit too, but that's a follow-on.
llvm-svn: 374397
Summary: It ensures that the bswap is generated even when a part of the subtree already matches a bswap transform.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68250
llvm-svn: 374340
As background, starting in D66309, I'm working on support unordered atomics analogous to volatile flags on normal LoadSDNode/StoreSDNodes for X86.
As part of that, I spent some time going through usages of LoadSDNode and StoreSDNode looking for cases where we might have missed a volatility check or need an atomic check. I couldn't find any cases that clearly miscompile - i.e. no test cases - but a couple of pieces in code loop suspicious though I can't figure out how to exercise them.
This patch adds defensive checks and asserts in the places my manual audit found. If anyone has any ideas on how to either a) disprove any of the checks, or b) hit the bug they might be fixing, I welcome suggestions.
Differential Revision: https://reviews.llvm.org/D68419
llvm-svn: 374261
If a fp scalar is loaded and then used as both a scalar and a vector broadcast, perform the load as a broadcast and then extract the scalar for 'free' from the 0th element.
This involved switching the order of the X86ISD::BROADCAST combines so we only convert to X86ISD::BROADCAST_LOAD once all other canonicalizations have been attempted.
Adds a DAGCombinerInfo::recursivelyDeleteUnusedNodes wrapper.
Fixes PR43217
Differential Revision: https://reviews.llvm.org/D68544
llvm-svn: 373871
Summary: It ensures that the bswap is generated even when a part of the subtree already matches a bswap transform.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68250
llvm-svn: 373850
As discussed on llvm-dev and:
https://bugs.llvm.org/show_bug.cgi?id=43542
...we have transforms that assume shift operations are legal and transforms to
use them are profitable, but that may not hold for simple targets.
In this case, the MSP430 target custom lowers shifts by repeating (many)
simpler/fixed ops. That can be avoided by keeping this code as setcc/select.
Differential Revision: https://reviews.llvm.org/D68397
llvm-svn: 373666
This patch converts the DAGCombine isNegatibleForFree/GetNegatedExpression into overridable TLI hooks.
The intention is to let us extend existing FNEG combines to work more generally with negatible float ops, allowing it work with target specific combines and opcodes (e.g. X86's FMA variants).
Unlike the SimplifyDemandedBits, we can't just handle target nodes through a Target callback, we need to do this as an override to allow targets to handle generic opcodes as well. This does mean that the target implementations has to duplicate some checks (recursion depth etc.).
Partial reversion of rL372756 - I've identified the infinite loop issue inside the X86 override but haven't fixed it yet so I've only (re)committed the common TargetLowering refactoring part of the patch.
Differential Revision: https://reviews.llvm.org/D67557
llvm-svn: 373343
Rename old function to explicitly show that it cares only about alignment.
The new allowsMemoryAccess call the function related to alignment by default
and can be overridden by target to inform whether the memory access is legal or
not.
Differential Revision: https://reviews.llvm.org/D67121
llvm-svn: 372935
We might be able to do better on the example in the test,
but in general, we should not scalarize a splatted vector
binop if there are other uses of the binop. Otherwise, we
can end up with code as we had - a scalar op that is
redundant with a vector op.
llvm-svn: 372886
This patch converts the DAGCombine isNegatibleForFree/GetNegatedExpression into overridable TLI hooks and includes a demonstration X86 implementation.
The intention is to let us extend existing FNEG combines to work more generally with negatible float ops, allowing it work with target specific combines and opcodes (e.g. X86's FMA variants).
Unlike the SimplifyDemandedBits, we can't just handle target nodes through a Target callback, we need to do this as an override to allow targets to handle generic opcodes as well. This does mean that the target implementations has to duplicate some checks (recursion depth etc.).
I've only begun to replace X86's FNEG handling here, handling FMADDSUB/FMSUBADD negation and some low impact codegen changes (some FMA negatation propagation). We can build on this in future patches.
Differential Revision: https://reviews.llvm.org/D67557
llvm-svn: 372333
As commented on D67557 we have a lot of uses of depth checks all using magic numbers.
This patch adds the SelectionDAG::MaxRecursionDepth constant and moves over some general cases to use this explicitly.
Differential Revision: https://reviews.llvm.org/D67711
llvm-svn: 372315
Summary:
`DAGCombiner::visitADDLikeCommutative()` already has a sibling fold:
`(add X, Carry) -> (addcarry X, 0, Carry)`
This fold, as suggested by @efriedma, helps recover from //some//
of the regressions of D62266
Reviewers: efriedma, deadalnix
Subscribers: javed.absar, kristof.beyls, llvm-commits, efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62392
llvm-svn: 372259
This is the first sweep of generic code to add isAtomic bailouts where appropriate. The intention here is to have the switch from AtomicSDNode to LoadSDNode/StoreSDNode be close to NFC; that is, I'm not looking to allow additional optimizations at this time. That will come later. See D66309 for context.
Differential Revision: https://reviews.llvm.org/D66318
llvm-svn: 371786
The X86 decision assumes the compare will produce a result in an XMM
register, but that can't happen for an fp128 compare since those
go to a libcall the returns an i32. Pass the VT so X86 can check
the type.
llvm-svn: 371775
Current implementation of estimating divisions loses precision since it
estimates reciprocal first and does multiplication. This patch is to re-order
arithmetic operations in the last iteration in DAGCombiner to improve the
accuracy.
Reviewed By: Sanjay Patel, Jinsong Ji
Differential Revision: https://reviews.llvm.org/D66050
llvm-svn: 371713
Summary:
Add an intrinsic that takes 2 unsigned integers with
the scale of them provided as the third argument and
performs fixed point multiplication on them. The
result is saturated and clamped between the largest and
smallest representable values of the first 2 operands.
This is a part of implementing fixed point arithmetic
in clang where some of the more complex operations
will be implemented as intrinsics.
Patch by: leonardchan, bjope
Reviewers: RKSimon, craig.topper, bevinh, leonardchan, lebedev.ri, spatel
Reviewed By: leonardchan
Subscribers: ychen, wuzish, nemanjai, MaskRay, jsji, jdoerfert, Ka-Ka, hiraditya, rjmccall, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57836
llvm-svn: 371308
The motivating bugs are:
https://bugs.llvm.org/show_bug.cgi?id=41340https://bugs.llvm.org/show_bug.cgi?id=42697
As discussed there, we could view this as a failure of IR canonicalization,
but then we would need to implement a backend fixup with target overrides
to get this right in all cases. Instead, we can just view this as a codegen
opportunity. It's not even clear for x86 exactly when we should favor
test+set; some CPUs have better theoretical throughput for the ALU ops than
bt/test.
This patch is made more complicated than I expected because there's an early
DAGCombine for 'and' that can change types of the intermediate ops via
trunc+anyext.
Differential Revision: https://reviews.llvm.org/D66687
llvm-svn: 370668
The motivating case for this is a long way from here:
https://bugs.llvm.org/show_bug.cgi?id=43146
...but I think this is where we have to start.
We need to canonicalize/optimize sequences of shift and logic to ease
pattern matching for things like bswap and improve perf in general.
But without the artificial limit of '!LegalTypes' (early combining),
there are a lot of test diffs, and not all are good.
In the minimal tests added for this proposal, x86 should have better
throughput in all cases. AArch64 is neutral for scalar tests because
it can fold shifts into bitwise logic ops.
There are 3 shift opcodes and 3 logic opcodes for a total of 9 possible patterns:
https://rise4fun.com/Alive/VlIhttps://rise4fun.com/Alive/n1mhttps://rise4fun.com/Alive/1Vn
Differential Revision: https://reviews.llvm.org/D67021
llvm-svn: 370617
Narrowing stores when the target doesn't support the narrow version
forces the target to expand into a load-modify-store sequence, which
is highly suboptimal. The information narrowing throws away (legality
of the inverse transform) is hard to re-analyze. If the target doesn't
support a store of the narrow type, don't narrow even in pre-legalize
mode.
No test as this is DAGCombiner and depends on target bits.
llvm-svn: 370576
This is hidden behind a (scalar-only) isOneConstant(N1) check at the moment, but once we get around to adding vector support we need to ensure we're dealing with the scalar bitwidth, not the total.
llvm-svn: 370468
Return a proper zero vector, just in case some elements are undef.
Noticed by inspection after dealing with a similar issue in PR43159.
llvm-svn: 370460
Summary: This is beneficial when the shuffle is only used once and end up being generated in a few places when some node is combined into a shuffle.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66718
llvm-svn: 370326
Summary: There are at least 2 ways to express the same shuffle. Various pieces of code explicit check for both option, but other places do not when they would benefit from doing it. This patches refactor the codebase to use buildLegalVectorShuffle in order to make that behavior more consistent.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66804
llvm-svn: 370190
(-X) * (-Y) + Z --> X * Y + Z
This is a missing optimization that shows up as a potential regression in D66050,
so we should solve it first. We appear to be partly missing this fold in IR as well.
We do handle the simpler case already:
(-X) * (-Y) --> X * Y
And it might be beneficial to make the constraint less conservative (eg, if both
operands are cheap, but not necessarily cheaper), but that causes infinite looping
for the existing fmul transform.
Differential Revision: https://reviews.llvm.org/D66755
llvm-svn: 370071
This change causes instrumented builds of Clang to have a fatal error in the
backend. https://reviews.llvm.org/D66537 has the details.
llvm-svn: 370006
This improves the combine I included in D66504 to handle constants in the upper operands of the concat. If we can constant fold them away we can pull the concat after the bin op. This helps with chains of madd reductions on X86 from loop unrolling. The loop madd reduction pattern creates pmaddwd with half the width of the add that follows it using zeroes to fill the upper bits. If we have two of these added together we can pull the zeroes through the accumulating add and then shrink it.
Differential Revision: https://reviews.llvm.org/D66680
llvm-svn: 369937