Currently, if the first usage of a procedure not defined in the file was
inside a procedure designator reference (not a call to it), the lowered
func.func lacked the argument attributes if any.
Fix this by using `CallInterface<T>::declare` too in SignatureBuilder to
create a new func.func instead of using custom code.
Note: this problem was made worse by the fact that module variables
fir.global are currently lowered before the module procedures func.func
are created. I will try to fix that in a later patch (the debug location
may still be wrong in certain cases) because there is quite some test
fallout when changing the order of globals/funcop in the output.
This patch syncs the logic inside `getInputFunc` that selects
the library API and the logic in `createIoRuntimeCallForItem`
that creates the input arguments for the library call.
There were cases where we selected `InputDerivedType` API
and passed only two arguments, and also we selected `InputDescriptor`
and passed three arguments.
It turns out we also were incorrectly selecting `OutputDescriptor`
in `getOutputFunc` (`test4` case in the new LIT test),
which caused runtime issues for output of a derived type
with descriptor components (due to the missing non-type-bound table).
Unlike other executable constructs with associating selectors, the
selector of a SELECT RANK construct can have the ALLOCATABLE or POINTER
attribute, and will work as an allocatable or object pointer within
each rank case, so long as there is no RANK(*) case.
Getting this right exposed a correctness risk with the popular
predicate IsAllocatableOrPointer() -- it will be true for procedure
pointers as well as object pointers, and in many contexts, a procedure
pointer should not be acceptable. So this patch adds the new predicate
IsAllocatableOrObjectPointer(), and updates some call sites of the original
function to use the new one.
Differential Revision: https://reviews.llvm.org/D159043
Generate supporting data structures and calls to new runtime IO functions
for defined IO that accesses non-type-bound procedures, such as `wft` in:
module m1
type t
integer n
end type
interface write(formatted)
module procedure wft
end interface
contains
subroutine wft(dtv, unit, iotype, v_list, iostat, iomsg)
class(t), intent(in) :: dtv
integer, intent(in) :: unit
character(*), intent(in) :: iotype
integer, intent(in) :: v_list(:)
integer, intent(out) :: iostat
character(*), intent(inout) :: iomsg
iostat = 0
write(unit,*,iostat=iostat,iomsg=iomsg) 'wft was called: ', dtv%n
end subroutine
end module
module m2
contains
subroutine test1
use m1
print *, 'test1, should call wft: ', t(1)
end subroutine
subroutine test2
use m1, only: t
print *, 'test2, should not call wft: ', t(2)
end subroutine
end module
use m1
use m2
call test1
call test2
print *, 'main, should call wft: ', t(3)
end
A block construct is an execution control construct that supports
declaration scopes contained within a parent subprogram scope or another
block scope. (blocks may be nested.) This is implemented by applying
basic scope processing to the block level.
Name uniquing/mangling is extended to support this. The term "block" is
heavily overloaded in Fortran standards. Prior name uniquing used tag `B`
for common block objects. Existing tag choices were modified to free up `B`
for block construct entities, and `C` for common blocks, and resolve
additional issues with other tags. The "old tag -> new tag" changes can
be summarized as:
-> B -- block construct -> new
B -> C -- common block
C -> YI -- intrinsic type descriptor; not currently generated
CT -> Y -- nonintrinsic type descriptor; not currently generated
G -> N -- namelist group
L -> -- block data; not needed -> deleted
Existing name uniquing components consist of a tag followed by a name
from user source code, such as a module, subprogram, or variable name.
Block constructs are different in that they may be anonymous. (Like other
constructs, a block may have a `block-construct-name` that can be used
in exit statements, but this name is optional.) So blocks are given a
numeric compiler-generated preorder index starting with `B1`, `B2`,
and so on, on a per-procedure basis.
Name uniquing is also modified to include component names for all
containing procedures rather than for just the immediate host. This
fixes an existing name clash bug with same-named entities in same-named
host subprograms contained in different-named containing subprograms,
and variations of the bug involving modules and submodules.
F18 clause 9.7.3.1 (Deallocation of allocatable variables) paragraph 1
has a requirement that an allocated, unsaved allocatable local variable
must be deallocated on procedure exit. The following paragraph 2 states:
When a BLOCK construct terminates, any unsaved allocated allocatable
local variable of the construct is deallocated.
Similarly, F18 clause 7.5.6.3 (When finalization occurs) paragraph 3
has a requirement that a nonpointer, nonallocatable object must be
finalized on procedure exit. The following paragraph 4 states:
A nonpointer nonallocatable local variable of a BLOCK construct
is finalized immediately before it would become undefined due to
termination of the BLOCK construct.
These deallocation and finalization requirements, along with stack
restoration requirements, require knowledge of block exits. In addition
to normal block termination at an end-block-stmt, a block may be
terminated by executing a branching statement that targets a statement
outside of the block. This includes
Single-target branch statements:
- goto
- exit
- cycle
- return
Bounded multiple-target branch statements:
- arithmetic goto
- IO statement with END, EOR, or ERR specifiers
Unbounded multiple-target branch statements:
- call with alternate return specs
- computed goto
- assigned goto
Lowering code is extended to determine if one of these branches exits
one or more relevant blocks or other constructs, and adds a mechanism to
insert any necessary deallocation, finalization, or stack restoration
code at the source of the branch. For a single-target branch it suffices
to generate the exit code just prior to taking the indicated branch.
Each target of a multiple-target branch must be analyzed individually.
Where necessary, the code must first branch to an intermediate basic
block that contains exit code, followed by a branch to the original target
statement.
This patch implements an `activeConstructStack` construct exit mechanism
that queries a new `activeConstruct` PFT bit to insert stack restoration
code at block exits. It ties in to existing code in ConvertVariable.cpp
routine `instantiateLocal` which has code for finalization, making block
exit finalization on par with subprogram exit finalization. Deallocation
is as yet unimplemented for subprograms or blocks. This may result in
memory leaks for affected objects at either the subprogram or block level.
Deallocation cases can be addressed uniformly for both scopes in a future
patch, presumably with code insertion in routine `instantiateLocal`.
The exit code mechanism is not limited to block construct exits. It is
also available for use with other constructs. In particular, it is used
to replace custom deallocation code for a select case construct character
selector expression where applicable. This functionality is also added
to select type and associate constructs. It is available for use with
other constructs, such as select rank and image control constructs,
if that turns out to be necessary.
Overlapping nonfunctional changes include eliminating "FIR" from some
routine names and eliminating obsolete spaces in comments.
Clang uses signext/zeroext attributes for integer arguments shorter than
the default 'int' type on a target. So Flang has to match this for functions
from Fortran runtime and also for BIND(C) routines. This patch implements
ABI adjustments only for Fortran runtime calls. BIND(C) part will be done
separately.
This resolves https://github.com/llvm/llvm-project/issues/58579
Differential Revision: https://reviews.llvm.org/D142677
A submodule is a program unit that may contain the implementions of procedures
declared in an ancestor module or submodule.
Processing for the equivalence groups and variables declared in a submodule
scope is similar to existing processing for the equivalence groups and
variables in module and procedure scopes. However, module and procedure scopes
are tied directly to code in the Pre-FIR Tree (PFT), whereas processing for a
submodule must have access to an ancestor module scope that is guaranteed
to be present in a .mod file, but is not guaranteed to be in the PFT. This
difference is accommodated by tying processing directly to a front end scope.
Function scopes that can be processed on the fly are done that way; the
resulting variable information is never stored. Module and submodule scopes
whose symbol information may be needed during lowering of any number of module
procedures are instead cached on first use, and reused as needed.
These changes are a direct extension of current code. All module and submodule
variables in scope are processed, whether referenced or not. A possible
alternative would be to instead process symbols only when first used. While
this could ultimately be beneficial, such an approach must account for the
presence of equivalence groups. That information is not currently available
for on-the-fly variable processing.
Some additional changes are needed to include submodules in places where
modules must be considered, and to include separate module procedures in
places where other subprogram variants are considered. There is also a fix
for a bug involving the use of variables in an equivalence group in a
namelist group, which also involves scope processing code.
Polymorphic entities are already emboxed. Just update
the code to use `BaseBoxType` instead of `BoxType`.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D139707
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Rework some recent changes to the ENUM_CLASS() macro so that
all of the construction of enumerator-to-name string mapping
data structures is again performed at compilation time.
Differential Revision: https://reviews.llvm.org/D137859
Clang uses signext/zeroext attributes for integer arguments shorter than
the default 'int' type on a target. So Flang has to match this for functions
from Fortran runtime and also for BIND(C) routines. This patch implements
ABI adjustments only for Fortran runtime calls. BIND(C) part will be done
separately.
This resolves https://github.com/llvm/llvm-project/issues/58579
Differential Revision: https://reviews.llvm.org/D137050
Clang uses signext/zeroext attributes for integer arguments shorter than
the default 'int' type on a target. So Flang has to match this for functions
from Fortran runtime and also for BIND(C) routines. This patch implements
ABI adjustments only for Fortran runtime calls. BIND(C) part will be done
separately.
This resolves https://github.com/llvm/llvm-project/issues/58579
Differential Revision: https://reviews.llvm.org/D137050
TARGET dummy arguments have fir.target attribute attached to them,
but globals do not have any sign of TARGET. This patch adds
target attribute for globals, which can be queried via
::fir::GlobalOp::getTarget().
Differential Revision: https://reviews.llvm.org/D135313
If a namelist item is an allocatable or pointer and is also part of a common
block, the box should be loaded from the common block ref.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D134470
The process of passing arguments to IO calls can cause allocations that
get referenced during EndIO calls. Calling "Finalize" causes these
allocations to be deallocated. This means that references to them in
the code in EndIO will be invalid. The fix is to delay the call to
"finalize" until after the call to EndIO.
This particularly causes problems with the IO items are strings that are
produced by calls to functions.
Differential Revision: https://reviews.llvm.org/D134383
The runtime function was implemented and tested and the
specifier was handled, but it seems lowering was never
specifically added.
Differential Revision: https://reviews.llvm.org/D131814
Add the remaining pieces to support IO for noncontigous formats.
This is done by passing an array descriptor to IO calls. Scalar
formats continue to pass string and length arguments. IO calls
with formats are modified to place the new format descriptor
argument directly after the original string and length arguments.
Add source coordinates to BeginWait and BeginWaitAll calls
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D128970
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Here is a character SELECT CASE construct that requires a temp to hold the
result of the TRIM intrinsic call:
```
module m
character(len=6) :: s
contains
subroutine sc
n = 0
if (lge(s,'00')) then
select case(trim(s))
case('11')
n = 1
case default
continue
case('22')
n = 2
case('33')
n = 3
case('44':'55','66':'77','88':)
n = 4
end select
end if
print*, n
end subroutine
end module m
```
This SELECT CASE construct is implemented as an IF/ELSE-IF/ELSE comparison
sequence. The temp must be retained until some comparison is successful.
At that point the temp may be freed. Generalize statement context processing
to allow multiple finalize calls to do this, such that the program always
executes exactly one freemem call.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: klausler, vdonaldson
Differential Revision: https://reviews.llvm.org/D128852
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld, vdonaldson
Differential Revision: https://reviews.llvm.org/D128502
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
This patch replaces some `auto` with proper type. This was done in fir-dev
but not upstreamed yet.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D128350
Remove a backwards dependence from Optimizer -> Lower by moving Todo.h
to the optimizer and out of lowering.
This patch is part of the upstreaming effort from fir-dev branch.
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D127292
Now that the requirements and implementation of asynchronous I/O are
better understood, adjust their I/O runtime APIs. In particular:
1) Remove the BeginAsynchronousOutput/Input APIs; they're not needed,
since any data transfer statement might have ASYNCHRONOUS= and
(if ASYNCHRONOUS='YES') ID= control list specifiers that need to
at least be checked.
2) Add implementations for BeginWait(All) to check for the error
case of a bad unit number and nonzero ID=.
3) Rearrange and comment SetAsynchronous so that it's clear that
it can be called for READ/WRITE as well as for OPEN.
The implementation remains completely synchronous, but should be conforming.
Where opportunities make sense for true asynchronous implementations of
some big block transfers without SIZE= in the future, we'll need to add
a GetAsynchronousId API to capture ID= on a READ or WRITE; add sourceFile
and sourceLine arguments to BeginWait(All) for good error reporting;
track pending operations in unit.h; and add code to force synchronization
to non-asynchronous I/O operations.
Lowering should call SetAsynchronous when ASYNCHRONOUS= appears as
a control list specifier. It should also set ID=x variables to 0
until such time as we support asynchronous operations, if ever.
This patch only removes the removed APIs from lowering.
Differential Revision: https://reviews.llvm.org/D126143
This removes any potential confusion with the `getType` accessors
which correspond to SSA results of an operation, and makes it
clear what the intent is (i.e. to represent the type of the function).
Differential Revision: https://reviews.llvm.org/D121762
This patch adds lowering for IO input with vector subscripts.
It defines a VectorSubscriptBox class that allow representing and working
with a lowered Designator containing vector subscripts while ensuring
all the subscripts expression are only lowered once.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D121806
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Currently, CGOps.h and FIROps.h contain `using namespace mlir;`. Every
file that includes one of these header files (directly and transitively)
will have the MLIR namespace enabled. With name-clashes within
sub-projects (LLVM and MLIR, MLIR and Flang), this is not desired. Also,
it is not possible to "un-use" a namespace once it is "used". Instead,
we should try to limit `using namespace` to implementation files (i.e.
*.cpp).
This patch removes `using namespace mlir;` from header files and adjusts
other files accordingly. In header and TableGen files, extra namespace
qualifier is added when referring to symbols defined in MLIR. Similar
approach is adopted in source files that didn't require many changes. In
files that would require a lot of changes, `using namespace mlir;` is
added instead.
Differential Revision: https://reviews.llvm.org/D120897
This patch adds the lowering of the `inquire` statement.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D120822
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D120823
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patches adds lowering for couple of basic io statements such as `flush`,
`endfile`, `backspace` and `rewind`
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D120821
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D120822
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch adds the lowering of open and close statements
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D120821
Co-authored-by: Jean Perier <jperier@nvidia.com>
Functionality in IO.h and IO.cpp have been upstreamed together with the frontend
when flang landed upstream. Those files are out of date compared with fir-dev.
These functionality will be upstreamed again when needed in the lowering process
with an up to date code and a proper review.
These files (and the functions it contains) are not currently used. Hence
removing it is NFC.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D118593
Functionality present in `flang/include/flang/Lower/ComplexExpr.h` are
available in `flang/include/flang/Optimizer/Builder/Complex.h`. This patch removes
the obsolete files.
Reviewed By: kiranchandramohan, schweitz
Differential Revision: https://reviews.llvm.org/D118462
This patch removes some files made obsolete by newer version
of them available in the Optimizer directory.
`flang/include/flang/Lower/FIRBuilder.h` and `flang/lib/Lower/FIRBuilder.cpp` are
removed and replace by the newer version present in
`flang/include/flang/Optimizer/Builder/FIRBuilder.h` and
`flang/lib/Optimizer/Builder/FIRBuilder.cpp`.
`flang/include/flang/Lower/Support/BoxValue.h` and `flang/lib/Lower/ConvertExpr.cpp` are removed and replace by the newer
version present in `flang/include/flang/Optimizer/Builder/BoxValue.h`
This patch is a preparation to be able to upstream the lowering from
fir-dev.
Reviewed By: jeanPerier, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D118404