We previously were defining _BSD_SOURCE right before including getopt.h.
However, on mingw-w64, getopt.h is also transitively included by
unistd.h, and unistd.h can be transitively included by many headers
(recently, by some libc++ headers).
Therefore, to be safe, we need to define _BSD_SOURCE before including
any header. Thus do this in CMake.
This fixes https://github.com/llvm/llvm-project/issues/76050.
TestGlobalModuleCache.py, a recently added test, tries to update a
source file in the build directory, but it assumes the file is writable.
In our distributed build and test system, this is not always true, so
the test often fails with a write permissions error.
This change fixes that by setting the permissions on the file to be
writable before attempting to write to it.
If adding a user commands fails because a command with the same name
already exists, we only say that "force replace is not set" without
telling the user _how_ to set it. There are two ways to do so; this
commit changes the error message to mention both.
The way this code was updated in
dd95877958 meant that if the first module
did not have the symbol, the iteration stopped as returning true means
stop. So only if every module had the symbol would we find it, in the
last module.
Invert the condition to break when we find the first instance, which is
what the previous code did.
This reverts commit 01c4ecb7ae,
d14d52158b and
a756dc4724.
This removes the logging and workaround I added earlier,
and puts back the skip for Arm/AArch64 Linux.
I've not seen it fail on AArch64 since, but let's not create
more noise if it does.
I've written up the issue as https://github.com/llvm/llvm-project/issues/76057.
It's something to do with trying to destroy a process while
a thread is doing a single sep. So my workaround wouldn't have
worked in any case. It needs a more involved fix.
This has been flaky for a while, for example
https://lab.llvm.org/buildbot/#/builders/96/builds/50350
```
Command Output (stdout):
--
lldb version 18.0.0git (https://github.com/llvm/llvm-project.git revision 3974d89bde)
clang revision 3974d89bde
llvm revision 3974d89bde
"can't evaluate expressions when the process is running."
```
```
PLEASE submit a bug report to https://github.com/llvm/llvm-project/issues/ and include the crash backtrace.
#0 0x0000ffffa46191a0 llvm::sys::PrintStackTrace(llvm::raw_ostream&, int) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x529a1a0)
#1 0x0000ffffa4617144 llvm::sys::RunSignalHandlers() (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x5298144)
#2 0x0000ffffa46198d0 SignalHandler(int) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x529a8d0)
#3 0x0000ffffab25b7dc (linux-vdso.so.1+0x7dc)
#4 0x0000ffffab13d050 /build/glibc-Q8DG8B/glibc-2.31/string/../sysdeps/aarch64/multiarch/memcpy_advsimd.S:92:0
#5 0x0000ffffa446f420 lldb_private::process_gdb_remote::GDBRemoteRegisterContext::PrivateSetRegisterValue(unsigned int, llvm::ArrayRef<unsigned char>) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x50f0420)
#6 0x0000ffffa446f7b8 lldb_private::process_gdb_remote::GDBRemoteRegisterContext::GetPrimordialRegister(lldb_private::RegisterInfo const*, lldb_private::process_gdb_remote::GDBRemoteCommunicationClient&) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x50f07b8)
#7 0x0000ffffa446f308 lldb_private::process_gdb_remote::GDBRemoteRegisterContext::ReadRegisterBytes(lldb_private::RegisterInfo const*) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x50f0308)
#8 0x0000ffffa446ec1c lldb_private::process_gdb_remote::GDBRemoteRegisterContext::ReadRegister(lldb_private::RegisterInfo const*, lldb_private::RegisterValue&) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x50efc1c)
#9 0x0000ffffa412eaa4 lldb_private::RegisterContext::ReadRegisterAsUnsigned(lldb_private::RegisterInfo const*, unsigned long) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x4dafaa4)
#10 0x0000ffffa420861c ReadLinuxProcessAddressMask(std::shared_ptr<lldb_private::Process>, llvm::StringRef) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x4e8961c)
#11 0x0000ffffa4208430 ABISysV_arm64::FixCodeAddress(unsigned long) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x4e89430)
```
Judging by the backtrace something is trying to read the pointer authentication address/code mask
registers. This explains why I've not seen this issue locally, as the buildbot runs on Graviton
3 with has the pointer authentication extension.
I will try to reproduce, fix and re-enable the test.
And remove the workaround I was trying, as this logging may prove what
the actual issue is.
Which I think is that the thread plan map in Process is cleared before
the threads are destroyed. So Thread::ShouldStop could be getting
the current plan, then the plan map is cleared, then Thread::ShouldStop
is deciding based on that plan to pop a plan from the now empty stack.
This a follow-up PR from this other one:
https://github.com/llvm/llvm-project/pull/74413
Nothing calls into these two methods, so we (@DavidSpickett,
@adrian-prantl, and I) agreed to remove them once we merged the previous
PR.
NestedClass will be found via Class::NestedClass and
ClassTypedef::NestedClass. So the first part of the test gets 2 results
as the default is to find all matching types.
In the next part, we ask for only the first match and expect to get only
1 of those two possible results.
The function was using the default version of ValueObject::Dump, which
has a default of using the synthetic-ness of the top-level value for
determining whether to print _all_ values as synthetic. This resulted in
some unusual behavior, where e.g. a std::vector is stringified as
synthetic if its dumped as the top level object, but in its raw form if
it is a member of a struct without a pretty printer.
The SBValue class already has properties which determine whether one
should be looking at the synthetic view of the object (and also whether
to use dynamic types), so it seems more natural to use that.
This patch replaces uses of StringRef::startswith with
StringRef::starts_with for consistency with
std::{string,string_view}::starts_with in C++20.
I'm planning to deprecate and eventually remove
StringRef::{starts,ends}with.
This patch replaces uses of StringRef::{starts,ends}with with
StringRef::{starts,ends}_with for consistency with
std::{string,string_view}::{starts,ends}_with in C++20.
I'm planning to deprecate and eventually remove
StringRef::{starts,ends}with.
This patch replaces uses of StringRef::{starts,ends}with with
StringRef::{starts,ends}_with for consistency with
std::{string,string_view}::{starts,ends}_with in C++20.
I'm planning to deprecate and eventually remove
StringRef::{starts,ends}with.
This patch fixes the SymbolFilePDBTests::TestMaxMatches(...) by making
it test what it was testing before, see comments in the test case for
details.
It also disables TestUniqueTypes4.py for now until we can debug or fix
why it isn't working.
This adds 23 new helper functions to LLDB's CompilerType class, things
like IsSmartPtrType, IsPromotableIntegerType,
GetNumberofNonEmptyBaseClasses, and GetTemplateArgumentType (to name a
few).
It also has run clang-format on the files CompilerType.{h,cpp}.
These helper functions are needed as part of the implementation for the
Data Inspection Language, (see
https://discourse.llvm.org/t/rfc-data-inspection-language/69893).
This adds support for optionally prefixing any command with `?` and/or
`!`.
- `?` prevents the output of a commands to be printed to the console
unless it fails.
- `!` aborts the dap if the command fails.
They come in handy when programmatically running commands on behalf of
the user without wanting them to know unless they fail, or when a
critical setup is required as part of launchCommands and it's better to
abort on failures than to silently skip.
This reverts commit 481bb62e50 and
71b4d7498f, along with the logging
and assert I had added to the test previously.
Now that I've caught it failing on Arm:
https://lab.llvm.org/buildbot/#/builders/17/builds/46598
Now I have enough to investigate, skip the test on the effected
platforms while I do that.
If you type `settings show <tab>` LLDB might crash, depending on the
version of libedit you're compiled with, and whether you're compiled
with `-DLLDB_EDITLINE_USE_WCHAR=0` (and depending on how the optimizer
lays out the stack...)
The issue has to do with trying to figure out whether the libedit
`getchar` callback is supposed to read a wide or 8 bit character. In
order to maintain backward compatibility, there's really no 'clean' way
to do it. We just have to make sure that we're invoking el_[w]getc with
a buffer that is as wide as the getchar callback (registered by the
`SetGetCharacterFunction` function further down in `Editline.cpp`.
So, it's 'fixed' with a comment, and a wider version of the 'reply'
variable.
Co-authored-by: Kevin Frei <freik@meta.com>
Underlying StringMap API for providing a hash has caused some problems
(observed a crash in lld) - so reverting this until I can figure out/fix
what's going on there.
This reverts commit 52ba075571.
This reverts commit 2e19760230.
This is part of ongoing attempts to catch the test from
2684281d20 failing on Arm and AArch64.
I did get logs for the failure but only on Arm, where the backtrace is
truncated. So, let's do the assert that PopPlan was going to do,
before we call it.
Then I should know exactly which PopPlan is asserting.
Technically I should take a mutex here, but technically I shouldn't
be debugging via buildbot, so I'm going to take the risk temporarily.
This reverts commit 35dacf2f51.
And relands the original change with two additions so I can debug the failure on Arm/AArch64:
* Enable lldb step logging in the tests.
* Assert that the current plan is not the base plan at the spot I believe is calling PopPlan.
These will be removed and replaced with a proper fix once I see some failures on the bots,
I couldn't reproduce it locally.
(also, no sign of it on the x86_64 bot)
It's more meaningful and actionable to indicate which element in the
array has an issue by returning that element's index instead of its
value. The value can be ambiguous if at least one other element has the
same value.
The first parameter for these methods is `idxs`, an array of indices
that represent a path from a (root) parent to on of its descendants,
typically though intermediate descendants. When the path leads to a
descendant that doesn't exist, the method is supposed to indicate where
things went wrong by setting an index to `&index_of_error`, the second
parameter.
The problem is the method sets `*index_of_error` to the index of the
most recent parent's child in the hierarchy, which isn't very useful if
there's more one index with the same value in the path.
In this example, each element in the path has a value that's the same as
another element.
```cpp
GetChildAtIndexPath({1, 2, 3, 3, 1, 1, 2}, &index_of_error);
```
Say the the second `1` in the path (the 5th element at `[4]`) doesn't
exist and the code returns a `nullptr`. In that situation, the code sets
`*index_of_error` to `1`, but that's an ambiguous hint can implicate the
1st, 5th, or 6th element (at `[0]`, `[4]`, or `[5]`).
It’s more helpful to set `*index_of_error` to `4` to clearly indicate
which element in `idxs` has the issue.
This patch revives the effort to get this Phabricator patch into
upstream:
https://reviews.llvm.org/D137900
This patch was accepted before in Phabricator but I found some
-gsimple-template-names issues that are fixed in this patch.
A fixed up version of the description from the original patch starts
now.
This patch started off trying to fix Module::FindFirstType() as it
sometimes didn't work. The issue was the SymbolFile plug-ins didn't do
any filtering of the matching types they produced, and they only looked
up types using the type basename. This means if you have two types with
the same basename, your type lookup can fail when only looking up a
single type. We would ask the Module::FindFirstType to lookup "Foo::Bar"
and it would ask the symbol file to find only 1 type matching the
basename "Bar", and then we would filter out any matches that didn't
match "Foo::Bar". So if the SymbolFile found "Foo::Bar" first, then it
would work, but if it found "Baz::Bar" first, it would return only that
type and it would be filtered out.
Discovering this issue lead me to think of the patch Alex Langford did a
few months ago that was done for finding functions, where he allowed
SymbolFile objects to make sure something fully matched before parsing
the debug information into an AST type and other LLDB types. So this
patch aimed to allow type lookups to also be much more efficient.
As LLDB has been developed over the years, we added more ways to to type
lookups. These functions have lots of arguments. This patch aims to make
one API that needs to be implemented that serves all previous lookups:
- Find a single type
- Find all types
- Find types in a namespace
This patch introduces a `TypeQuery` class that contains all of the state
needed to perform the lookup which is powerful enough to perform all of
the type searches that used to be in our API. It contain a vector of
CompilerContext objects that can fully or partially specify the lookup
that needs to take place.
If you just want to lookup all types with a matching basename,
regardless of the containing context, you can specify just a single
CompilerContext entry that has a name and a CompilerContextKind mask of
CompilerContextKind::AnyType.
Or you can fully specify the exact context to use when doing lookups
like: CompilerContextKind::Namespace "std"
CompilerContextKind::Class "foo"
CompilerContextKind::Typedef "size_type"
This change expands on the clang modules code that already used a
vector<CompilerContext> items, but it modifies it to work with
expression type lookups which have contexts, or user lookups where users
query for types. The clang modules type lookup is still an option that
can be enabled on the `TypeQuery` objects.
This mirrors the most recent addition of type lookups that took a
vector<CompilerContext> that allowed lookups to happen for the
expression parser in certain places.
Prior to this we had the following APIs in Module:
```
void
Module::FindTypes(ConstString type_name, bool exact_match, size_t max_matches,
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files,
TypeList &types);
void
Module::FindTypes(llvm::ArrayRef<CompilerContext> pattern, LanguageSet languages,
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files,
TypeMap &types);
void Module::FindTypesInNamespace(ConstString type_name,
const CompilerDeclContext &parent_decl_ctx,
size_t max_matches, TypeList &type_list);
```
The new Module API is much simpler. It gets rid of all three above
functions and replaces them with:
```
void FindTypes(const TypeQuery &query, TypeResults &results);
```
The `TypeQuery` class contains all of the needed settings:
- The vector<CompilerContext> that allow efficient lookups in the symbol
file classes since they can look at basename matches only realize fully
matching types. Before this any basename that matched was fully realized
only to be removed later by code outside of the SymbolFile layer which
could cause many types to be realized when they didn't need to.
- If the lookup is exact or not. If not exact, then the compiler context
must match the bottom most items that match the compiler context,
otherwise it must match exactly
- If the compiler context match is for clang modules or not. Clang
modules matches include a Module compiler context kind that allows types
to be matched only from certain modules and these matches are not needed
when d oing user type lookups.
- An optional list of languages to use to limit the search to only
certain languages
The `TypeResults` object contains all state required to do the lookup
and store the results:
- The max number of matches
- The set of SymbolFile objects that have already been searched
- The matching type list for any matches that are found
The benefits of this approach are:
- Simpler API, and only one API to implement in SymbolFile classes
- Replaces the FindTypesInNamespace that used a CompilerDeclContext as a
way to limit the search, but this only worked if the TypeSystem matched
the current symbol file's type system, so you couldn't use it to lookup
a type in another module
- Fixes a serious bug in our FindFirstType functions where if we were
searching for "foo::bar", and we found a "baz::bar" first, the basename
would match and we would only fetch 1 type using the basename, only to
drop it from the matching list and returning no results
When you debug a binary and the change & rebuild and then rerun in lldb
w/o quitting lldb, the Modules in the Global Module Cache for the old
binary & .o files if used are now "unreachable". Nothing in lldb is
holding them alive, and they've already been unlinked. lldb will
properly discard them if there's not another Target referencing them.
However, this only works in simple cases at present. If you have several
Targets that reference the same modules, it's pretty easy to end up
stranding Modules that are no longer reachable, and if you use a
sequence of SBDebuggers unreachable modules can also get stranded. If
you run a long-lived lldb process and are iteratively developing on a
large code base, lldb's memory gets filled with useless Modules.
This patch adds a test for the mode that currently works:
(lldb) target create foo
(lldb) run
<rebuild foo outside lldb>
(lldb) run
In that case, we do delete the unreachable Modules.
The next step will be to add tests for the cases where we fail to do
this, then see how to safely/efficiently evict unreachable modules in
those cases as well.
This commits fixes a few subtle bugs where the method:
1. Declares a local `Status error` which eclipses the method's parameter
`Status &error`.
- The method then sets the error state to the local `error` and returns
without ever touching the parameter `&error`.
- This effectively traps the error state and its message from ever
reaching the caller.
- I also threw in a null pointer check in case the callee doesn't set
its `Status` parameter but returns `0`/`nullptr`.
2. Declares a local `Status deref_error` (good), passes it to the
`Dereference` method (also good), but then checks the status of the
method's `Status &error` parameter (not good).
- The fix checks `deref_error` instead and also checks for a `nullptr`
return value.
- There's a good opportunity here for a future PR that changes the
`Dereference` method to fold an error state into the `ValueObject`
return value's `m_error` instead of using a parameter.
3. Declares another local `Status error`, which it doesn't pass to a
method (because there isn't a parameter for it), and then checks for an
error condition that never happens.
- The fix just checks the callee's return value, because that's all it
has to go on.
- This likely comes from a copy/paste from issue 1 above.
rdar://119155810
lldb was rehashing the string 3 times (once to determine which StringMap
to use, once to query the StringMap, once to insert) on insertion (twice
on successful lookup).
This patch allows the lldb to benefit from hash improvements in LLVM
(from djbHash to xxh3).
Though further changes would be needed to cache this value to disk - we
shouldn't rely on the StringMap::hash remaining the same in the
future/this value should not be serialized to disk. If we want cache
this value StringMap should take a hashing template parameter to allow
for a fixed hash to be requested.
This is an extension to the protocol that emits the declaration
information along with the metadata of each variable. This can be used
by vscode extensions to implement, for example, a "goToDefinition"
action in the debug tab, or for showing the value of a variable right
next to where it's declared during a debug session.
As this is cheap, I'm not gating this information under any setting.
Currently there's an include in which `[opt]` might be emitted twice if
the frame format also asks for it. As a trivial fix, we should manually
emit `[opt]` only if a custom frame format is not specified.
This commit factors out the logic building each component of a qualified
name into its own function so that it may be reused by a future commit,
while also simplifying the logic of assembling these pieces together by
using llvm::interleave.