This patch replaces uses of StringRef::{starts,ends}with with
StringRef::{starts,ends}_with for consistency with
std::{string,string_view}::{starts,ends}_with in C++20.
I'm planning to deprecate and eventually remove
StringRef::{starts,ends}with.
Add the ability to get a C++ vtable ValueObject from another
ValueObject.
This patch adds the ability to ask a ValueObject for a ValueObject that
represents the virtual function table for a C++ class. If the
ValueObject is not a C++ class with a vtable, a valid ValueObject value
will be returned that contains an appropriate error. If it is successful
a valid ValueObject that represents vtable will be returned. The
ValueObject that is returned will have a name that matches the demangled
value for a C++ vtable mangled name like "vtable for <class-name>". It
will have N children, one for each virtual function pointer. Each
child's value is the function pointer itself, the summary is the
symbolication of this function pointer, and the type will be a valid
function pointer from the debug info if there is debug information
corresponding to the virtual function pointer.
The vtable SBValue will have the following:
- SBValue::GetName() returns "vtable for <class>"
- SBValue::GetValue() returns a string representation of the vtable
address
- SBValue::GetSummary() returns NULL
- SBValue::GetType() returns a type appropriate for a uintptr_t type for
the current process
- SBValue::GetLoadAddress() returns the address of the vtable adderess
- SBValue::GetValueAsUnsigned(...) returns the vtable address
- SBValue::GetNumChildren() returns the number of virtual function
pointers in the vtable
- SBValue::GetChildAtIndex(...) returns a SBValue that represents a
virtual function pointer
The child SBValue objects that represent a virtual function pointer has
the following values:
- SBValue::GetName() returns "[%u]" where %u is the vtable function
pointer index
- SBValue::GetValue() returns a string representation of the virtual
function pointer
- SBValue::GetSummary() returns a symbolicated respresentation of the
virtual function pointer
- SBValue::GetType() returns the function prototype type if there is
debug info, or a generic funtion prototype if there is no debug info
- SBValue::GetLoadAddress() returns the address of the virtual function
pointer
- SBValue::GetValueAsUnsigned(...) returns the virtual function pointer
- SBValue::GetNumChildren() returns 0
- SBValue::GetChildAtIndex(...) returns invalid SBValue for any index
Examples of using this API via python:
```
(lldb) script vtable = lldb.frame.FindVariable("shape_ptr").GetVTable()
(lldb) script vtable
vtable for Shape = 0x0000000100004088 {
[0] = 0x0000000100003d20 a.out`Shape::~Shape() at main.cpp:3
[1] = 0x0000000100003e4c a.out`Shape::~Shape() at main.cpp:3
[2] = 0x0000000100003e7c a.out`Shape::area() at main.cpp:4
[3] = 0x0000000100003e3c a.out`Shape::optional() at main.cpp:7
}
(lldb) script c = vtable.GetChildAtIndex(0)
(lldb) script c
(void ()) [0] = 0x0000000100003d20 a.out`Shape::~Shape() at main.cpp:3
```
Since D101206 (`ba79fb2e1ff7130cde02fbbd325f0f96f8a522ca`) the `__hash_node::__value_`
member is wrapped in an anonymous union. `ValueObject::GetChildMemberWithName` doesn't see
through the union.
This patch accounts for this possible new layout by getting a handle to
the union before doing the by-name `__value_` lookup.
## Description
This pull request adds a new `stop-at-user-entry` option to LLDB
`process launch` command, allowing users to launch a process and pause
execution at the entry point of the program (for C-based languages,
`main` function).
## Motivation
This option provides a convenient way to begin debugging a program by
launching it and breaking at the desired entry point.
## Changes Made
- Added `stop-at-user-entry` option to `Options.td` and the
corresponding case in `CommandOptionsProcessLaunch.cpp` (short option is
'm')
- Implemented `GetUserEntryPointName` method in the Language plugins
available at the moment.
- Declared the `CreateBreakpointAtUserEntry` method in the Target API.
- Create Shell test for the command
`command-process-launch-user-entry.test`.
## Usage
`process launch --stop-at-user-entry` or `process launch -m` launches
the process and pauses execution at the entry point of the program.
We noticed some performance issue while in lldb-vscode for grabing the
name of the SBValue. Profiling shows SBValue::GetName() can cause
synthetic children provider of shared/unique_ptr to deference underlying
object and complete it type.
This patch lazily moves the dereference from synthetic child provider's
Update() method to GetChildAtIndex() so that SBValue::GetName() won't
trigger the slow code path.
Here is the culprit slow code path:
```
...
frame #59: 0x00007ff4102e0660 liblldb.so.15`SymbolFileDWARF::CompleteType(this=<unavailable>, compiler_type=0x00007ffdd9829450) at SymbolFileDWARF.cpp:1567:25 [opt]
...
frame #67: 0x00007ff40fdf9bd4 liblldb.so.15`lldb_private::ValueObject::Dereference(this=0x0000022bb5dfe980, error=0x00007ffdd9829970) at ValueObject.cpp:2672:41 [opt]
frame #68: 0x00007ff41011bb0a liblldb.so.15`(anonymous namespace)::LibStdcppSharedPtrSyntheticFrontEnd::Update(this=0x000002298fb94380) at LibStdcpp.cpp:403:40 [opt]
frame #69: 0x00007ff41011af9a liblldb.so.15`lldb_private::formatters::LibStdcppSharedPtrSyntheticFrontEndCreator(lldb_private::CXXSyntheticChildren*, std::shared_ptr<lldb_private::ValueObject>) [inlined] (anonymous namespace)::LibStdcppSharedPtrSyntheticFrontEnd::LibStdcppSharedPtrSyntheticFrontEnd(this=0x000002298fb94380, valobj_sp=<unavailable>) at LibStdcpp.cpp:371:5 [opt]
...
frame #78: 0x00007ff40fdf6e42 liblldb.so.15`lldb_private::ValueObject::CalculateSyntheticValue(this=0x000002296c66a500) at ValueObject.cpp:1836:27 [opt]
frame #79: 0x00007ff40fdf1939 liblldb.so.15`lldb_private::ValueObject::GetSyntheticValue(this=<unavailable>) at ValueObject.cpp:1867:3 [opt]
frame #80: 0x00007ff40fc89008 liblldb.so.15`ValueImpl::GetSP(this=0x0000022c71b90de0, stop_locker=0x00007ffdd9829d00, lock=0x00007ffdd9829d08, error=0x00007ffdd9829d18) at SBValue.cpp:141:46 [opt]
frame #81: 0x00007ff40fc7d82a liblldb.so.15`lldb::SBValue::GetSP(ValueLocker&) const [inlined] ValueLocker::GetLockedSP(this=0x00007ffdd9829d00, in_value=<unavailable>) at SBValue.cpp:208:21 [opt]
frame #82: 0x00007ff40fc7d817 liblldb.so.15`lldb::SBValue::GetSP(this=0x00007ffdd9829d90, locker=0x00007ffdd9829d00) const at SBValue.cpp:1047:17 [opt]
frame #83: 0x00007ff40fc7da6f liblldb.so.15`lldb::SBValue::GetName(this=0x00007ffdd9829d90) at SBValue.cpp:294:32 [opt]
...
```
Differential Revision: https://reviews.llvm.org/D159542
`std::basic_string<char>` is not a regex, and treating it as such could
unintentionally
cause a formatter to substring match a template type parameter, for
example:
`std::vector<std::basic_string<char>>`.
Differential Revision: https://reviews.llvm.org/D158663
ConstString can be implicitly converted into a llvm::StringRef. This is
very useful in many places, but it also hides places where we are
creating a ConstString only to use it as a StringRef for the entire
lifespan of the ConstString object.
I locally removed the implicit conversion and found some of the places we
were doing this.
Differential Revision: https://reviews.llvm.org/D159237
The usage of this variable was removed in `4f14c17df70916913d71914343dd4f6c709e218d`.
This is no longer used inside this file. Since the call to
`GetPersistentExpressionStateForLanguage` has side-effects I marked this
NFCI. But there is no good reason we need this here.
Differential Revision: https://reviews.llvm.org/D157992
Fix incorrect uses of LLDB_LOG_ERROR. The macro doesn't automatically
inject the error in the log message: it merely passes the error as the
first argument to formatv and therefore must be referenced with {0}.
Thanks to Nicholas Allegra for collecting a list of places where the
macro was misused.
rdar://111581655
Differential revision: https://reviews.llvm.org/D154530
This doesn't really use fast comparison or string uniqueness. In fact,
all of the current callers pass an empty string for type_name. The only
reason I don't remove it is because it looks like it is used downstream
for swift.
Differential Revision: https://reviews.llvm.org/D153810
This method just takes its ConstString parameter and gets a StringRef
out of it. Let's just pass in a StringRef directly.
This also cleans up some logic in the callers to be a little easier to
read and to avoid unnecessary ConstString creation.
Differential Revision: https://reviews.llvm.org/D153054
Existing callers of `GetChildAtIndex` pass true for can_create. This change
makes true the default value, callers don't have to pass an opaque true.
See also D151966 for the same change to `GetChildMemberWithName`.
Differential Revision: https://reviews.llvm.org/D152031
It turns out all existing callers of `GetChildMemberWithName` pass true for `can_create`.
This change makes `true` the default value, callers don't have to pass an opaque true.
Differential Revision: https://reviews.llvm.org/D151966
Following D151810, this changes `GetChildAtNamePath` to take a path of `StringRef`
values instead of `ConstString`.
Differential Revision: https://reviews.llvm.org/D151813
As with D151615, which changed `GetIndexOfChildMemberWithName` to take a `StringRef`
instead of a `ConstString`, this change does the same for `GetIndexOfChildWithName`.
Differential Revision: https://reviews.llvm.org/D151811
`GetChildMemberWithName` does not need a `ConstString`. This change makes the function
take a `StringRef` instead, which alleviates the need for callers to construct a
`ConstString`. I don't expect this change to improve performance, only ergonomics.
This is in support of Alex's effort to replace `ConstString` where appropriate.
There are related `ValueObject` functions that can also be changed, if this is accepted.
Differential Revision: https://reviews.llvm.org/D151615
- Remove unused parameter `valobj` (I checked downstream, not
even swift is using it).
- Return a std::pair<StringRef, StringRef> insted of having 2 out
parameter strings.
- Remove the use of ConstStrings.
This change was primarily mechanical except in
`ObjCLanguage::GetFormatterPrefixSuffix`. To keep this fast, we
construct an llvm::StringMap<std::pair<StringRef, StringRef>> so that we
can look things up quickly. There is some amount of cost to setting up
the map the first time it is called, but subsequent lookups should be
as fast as a hash + string comparison (the cost of looking up something
in an llvm::StringMap).
Differential Revision: https://reviews.llvm.org/D151603
This mimicks the implementation of the libstdcpp std::unique_ptr
formatter.
This has been attempted several years ago in
`0789722d85cf1f1fdbe2ffb2245ea0ba034a9f94` but was reverted in
`e7dd3972094c2f2fb42dc9d4d5344e54a431e2ce`.
The difference to the original patch is that we now maintain
a `$$dereference$$` member and we only store weak pointers
to the other children inside the synthetic frontend. This is
what the libc++ formatters do to prevent the recursion mentioned
in the revert commit.
The size of a full ObjC MethodName can vary somewhat, but it is
computable ahead of time.
Using a reasonably sized ObjC application, this actually improves the
time it takes to initialize symbol indexes for ObjC names ever so
slightly. Additionally, I found that the variability in time also was
improved considerably.
Differential Revision: https://reviews.llvm.org/D150914
The goal of this patch is to make it easier to reason about the state of
ObjCLanguage::MethodName. I do that in several ways:
- Instead of using the constructor directly, you go through a factory
method. It returns a std::optional<MethodName> so either you got an
ObjCLanguage::MethodName or you didn't. No more checking if it's valid
to know if you can use it or not.
- ObjCLanguage::MethodName is now immutable. You cannot change its
internals once it is created.
- ObjCLanguage::MethodName::GetFullNameWithoutCategory previously had a
parameter that let you get back an empty string if the method had no
category. Every caller of this method was enabling this behavior so I
dropped the parameter and made it the default behavior.
- No longer store all the various components of the method name as
ConstStrings. The relevant `Get` methods now return llvm::StringRefs
backed by the MethodName's internal storage. The lifetime of these
StringRefs are tied to the MethodName itself, so if you need to
persist these you need to create copies.
Differential Revision: https://reviews.llvm.org/D149914
This patch fixes libstdc++ data formatter for reference/pointer to std::string.
The failure testcases are added which succeed with the patch.
Differential Revision: https://reviews.llvm.org/D150313
The unique_ptr prettyprinter calls `GetValueOfLibCXXCompressedPair`,
which looks for a `__value_` child. However, when the second value in
the compressed pair is not an empty class, there are two `__value_`
children because `__compressed_pair` derives twice from
`__compressed_pair_elem`, one for each member of the pair. And then the
lookup fails because it's ambiguous.
This patch makes the following changes:
- Rename `GetValueOfLibCXXCompressedPair` to
`GetFirstValueOfLibCXXCompressedPair`, and add a similar function to
get the second value. Put both functions in
Plugin/Language/CPlusPlus/LibCxx.cpp because it seems inappropriate to
have libcxx-specific helpers separate from all the libcxx-dependent
code.
- Read the second value of the `__ptr_` pair and display a "deleter"
child in the unique_ptr synthetic child provider, when available.
- Add a test case for the non-empty deleter case.
Differential Revision: https://reviews.llvm.org/D148662
This patch allows users to evaluate expressions using
`expr -l c++20`. Currently DWARF keeps the CU's at
`DW_AT_language` at `DW_LANG_C_plus_plus_14` even
when compiling with `-std=c++20`. So even in "C++20
programs" expression evaluation will by default be
performed in `C++11` mode for now.
Enabling `C++14` has been previously attempted at
https://reviews.llvm.org/D80308
There are some remaining issues around evaluating C++20
expressions. Mainly, lack of support for C++20 AST nodes in
`clang::ASTImporter`. But these can be addressed in follow-up
patches.
All of these functions take a ConstString for the type_name,
but this isn't really needed for two reasons:
1.) This parameter is always constructed from a static c-string
constant.
2.) They are passed along to to `AddTypeSummary` as a StringRef anyway.
Differential Revision: https://reviews.llvm.org/D148050
Move responsibility of providing the instance variable name (`this`, `self`) from
`TypeSystem` to `Language`.
`Language` the natural place for this, but also has downstream benefits. Some languages
have multiple `TypeSystem` implementations (ex Swift), and by placing this logic in the
`Language`, redundancy is avoided.
This change relies on the tests from D145348 and D146320.
Differential Revision: https://reviews.llvm.org/D146548
With this patch member-function pointers are formatted using
`CXXFunctionPointerSummaryProvider`.
This turns,
```
(lldb) v pointer_to_member_func
(void (Foo::*)()) ::pointer_to_member_func = 0x00000000000000000000000100003f94
```
into
```
(lldb) v pointer_to_member_func
(void (Foo::*)()) ::pointer_to_member_func = 0x00000000000000000000000100003f94 (a.out`Foo::member_func() at main.cpp:3)
```
Differential Revision: https://reviews.llvm.org/D145242
With this patch member-function pointers are formatted using
`CXXFunctionPointerSummaryProvider`.
This turns,
```
(lldb) v pointer_to_member_func
(void (Foo::*)()) ::pointer_to_member_func = 0x00000000000000000000000100003f94
```
into
```
(lldb) v pointer_to_member_func
(void (Foo::*)()) ::pointer_to_member_func = 0x00000000000000000000000100003f94 (a.out`Foo::member_func() at main.cpp:3)
```
Differential Revision: https://reviews.llvm.org/D145242
The pretty printer for `std::coroutine_handle` was running into
> Assertion failed: (target_ctx != source_ctx && "Can't import into itself")
from ClangASTImporter.h, line 270.
This commit fixes the issue by removing the `CopyType` call from the
pretty printer. While this call was necessary in the past, it seems to
be no longer required, at least all test cases are still passing. Maybe
something changed in the meantime around the handling of `TypesystemClang`
instances. I don't quite understand why `CopyType` was necessary earlier.
I am not sure how to add a regression test for this, though. It seems
the issue is already triggered by the exising `TestCoroutineHandle.py`,
but API tests seem to ignore all violations of `lldbassert` and still
report the test as "passed", even if assertions were triggered
Differential Revision: https://reviews.llvm.org/D143127
So far, the pretty printer for `std::coroutine_handle` internally
dereferenced the contained frame pointer displayed the `promise`
as a sub-value. As noticed in https://reviews.llvm.org/D132624
by @labath, this can lead to an endless loop in lldb during printing
if the coroutine frame pointers form a cycle.
This commit breaks the cycle by exposing the `promise` as a pointer
type instead of a value type. The depth to which the `frame variable`
and the `expression` commands dereference those pointers can be
controlled using the `--ptr-depth` argument.
Differential Revision: https://reviews.llvm.org/D132815
The current interface theoretically could lead to a use-after-free
when a client holds on to the returned pointer. Fix this by returning
a shared_ptr to the scratch typesystem.
rdar://103619233
Differential Revision: https://reviews.llvm.org/D141100