Fixes https://github.com/llvm/llvm-project/issues/57372
Previously some work has already been done on this. A PR was generated
but it remained in review:
https://reviews.llvm.org/D136462
In short previous approach was following:
Changing the symbol names (making the searched part colorized) ->
printing them -> restoring the symbol names back in their original form.
The reviewers suggested that instead of changing the symbol table, this
colorization should be done in the dump functions itself. Our strategy
involves passing the searched regex pattern to the existing dump
functions responsible for printing information about the searched
symbol. This pattern is propagated until it reaches the line in the dump
functions responsible for displaying symbol information on screen.
At this point, we've introduced a new function called
"PutCStringColorHighlighted," which takes the searched pattern, a prefix and suffix,
and the text and applies colorization to highlight the pattern in the
output. This approach aims to streamline the symbol search process to
improve readability of search results.
Co-authored-by: José L. Junior <josejunior@10xengineers.ai>
This patch is rearranging code a bit to add WatchpointResources to
Process. A WatchpointResource is meant to represent a hardware
watchpoint register in the inferior process. It has an address, a size,
a type, and a list of Watchpoints that are using this
WatchpointResource.
This current patch doesn't add any of the features of
WatchpointResources that make them interesting -- a user asking to watch
a 24 byte object could watch this with three 8 byte WatchpointResources.
Or a Watchpoint on 1 byte at 0x1002 and a second watchpoint on 1 byte at
0x1003, these must both be served by a single WatchpointResource on that
doubleword at 0x1000 on a 64-bit target, if two hardware watchpoint
registers were used to track these separately, one of them may not be
hit. Or if you have one Watchpoint on a variable with a condition set,
and another Watchpoint on that same variable with a command defined or
different condition, or ignorecount, both of those Watchpoints need to
evaluate their criteria/commands when their WatchpointResource has been
hit.
There's a bit of code movement to rearrange things in the direction I'll
need for implementing this feature, so I want to start with reviewing &
landing this mostly NFC patch and we can focus on the algorithmic
choices about how WatchpointResources are shared and handled as they're
triggeed, separately.
This patch also stops printing "Watchpoint <n> hit: old value: <x>, new
vlaue: <y>" for Read watchpoints. I could make an argument for print
"Watchpoint <n> hit: current value <x>" but the current output doesn't
make any sense, and the user can print the value if they are
particularly interested. Read watchpoints are used primarily to
understand what code is reading a variable.
This patch adds more fallbacks for how to print the objects being
watched if we have types, instead of assuming they are all integral
values, so a struct will print its elements. As large watchpoints are
added, we'll be doing a lot more of those.
To track the WatchpointSP in the WatchpointResources, I changed the
internal API which took a WatchpointSP and devolved it to a Watchpoint*,
which meant touching several different Process files. I removed the
watchpoint code in ProcessKDP which only reported that watchpoints
aren't supported, the base class does that already.
I haven't yet changed how we receive a watchpoint to identify the
WatchpointResource responsible for the trigger, and identify all
Watchpoints that are using this Resource to evaluate their conditions
etc. This is the same work that a BreakpointSite needs to do when it has
been tiggered, where multiple Breakpoints may be at the same address.
There is not yet any printing of the Resources that a Watchpoint is
implemented in terms of ("watchpoint list", or
SBWatchpoint::GetDescription).
"watchpoint set var" and "watchpoint set expression" take a size
argument which was previously 1, 2, 4, or 8 (an enum). I've changed this
to an unsigned int. Most hardware implementations can only watch 1, 2,
4, 8 byte ranges, but with Resources we'll allow a user to ask for
different sized watchpoints and set them in hardware-expressble terms
soon.
I've annotated areas where I know there is work still needed with
LWP_TODO that I'll be working on once this is landed.
I've tested this on aarch64 macOS, aarch64 Linux, and Intel macOS.
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
(cherry picked from commit fc6b72523f)
This is a follow up patch after .debug_names can now emit local type
unit entries when we compile with type units + DWARF5 + .debug_names.
The pull request that added this functionality was:
https://github.com/llvm/llvm-project/pull/70515
This patch makes sure that the DebugNamesDWARFIndex in LLDB will not
manually need to parse type units if they have a valid index. It also
fixes the index to be able to correctly extract name entries that
reference type unit DIEs. Added a test to verify things work as
expected.
This patch is rearranging code a bit to add WatchpointResources to
Process. A WatchpointResource is meant to represent a hardware
watchpoint register in the inferior process. It has an address, a size,
a type, and a list of Watchpoints that are using this
WatchpointResource.
This current patch doesn't add any of the features of
WatchpointResources that make them interesting -- a user asking to watch
a 24 byte object could watch this with three 8 byte WatchpointResources.
Or a Watchpoint on 1 byte at 0x1002 and a second watchpoint on 1 byte at
0x1003, these must both be served by a single WatchpointResource on that
doubleword at 0x1000 on a 64-bit target, if two hardware watchpoint
registers were used to track these separately, one of them may not be
hit. Or if you have one Watchpoint on a variable with a condition set,
and another Watchpoint on that same variable with a command defined or
different condition, or ignorecount, both of those Watchpoints need to
evaluate their criteria/commands when their WatchpointResource has been
hit.
There's a bit of code movement to rearrange things in the direction I'll
need for implementing this feature, so I want to start with reviewing &
landing this mostly NFC patch and we can focus on the algorithmic
choices about how WatchpointResources are shared and handled as they're
triggeed, separately.
This patch also stops printing "Watchpoint <n> hit: old value: <x>, new
vlaue: <y>" for Read watchpoints. I could make an argument for print
"Watchpoint <n> hit: current value <x>" but the current output doesn't
make any sense, and the user can print the value if they are
particularly interested. Read watchpoints are used primarily to
understand what code is reading a variable.
This patch adds more fallbacks for how to print the objects being
watched if we have types, instead of assuming they are all integral
values, so a struct will print its elements. As large watchpoints are
added, we'll be doing a lot more of those.
To track the WatchpointSP in the WatchpointResources, I changed the
internal API which took a WatchpointSP and devolved it to a Watchpoint*,
which meant touching several different Process files. I removed the
watchpoint code in ProcessKDP which only reported that watchpoints
aren't supported, the base class does that already.
I haven't yet changed how we receive a watchpoint to identify the
WatchpointResource responsible for the trigger, and identify all
Watchpoints that are using this Resource to evaluate their conditions
etc. This is the same work that a BreakpointSite needs to do when it has
been tiggered, where multiple Breakpoints may be at the same address.
There is not yet any printing of the Resources that a Watchpoint is
implemented in terms of ("watchpoint list", or
SBWatchpoint::GetDescription).
"watchpoint set var" and "watchpoint set expression" take a size
argument which was previously 1, 2, 4, or 8 (an enum). I've changed this
to an unsigned int. Most hardware implementations can only watch 1, 2,
4, 8 byte ranges, but with Resources we'll allow a user to ask for
different sized watchpoints and set them in hardware-expressble terms
soon.
I've annotated areas where I know there is work still needed with
LWP_TODO that I'll be working on once this is landed.
I've tested this on aarch64 macOS, aarch64 Linux, and Intel macOS.
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
Fixes [#68035](https://github.com/llvm/llvm-project/issues/68035), where
an inconsistency in the order of "Process launched" and "Process
stopped" messages occurs during `process launch`.
The fix involves adjusting the message output sequence in
`CommandObjectProcessLaunch::DoExecute` within
`source/Commands/CommandObjectProcess.cpp`. This ensures "Process
launched" consistently precedes "Process stopped" when executing
commands with the '-o' flag, i.e., non-interactive mode.
Upon implementing this change, two tests failed:
`lldb/test/Shell/Breakpoint/jit-loader_jitlink_elf.test` and
`lldb/test/Shell/Breakpoint/jit-loader_rtdyld_elf.test`. These failures
were expected as they relied on the previous, now-corrected message
order. Updating these tests to align with the new message sequence is
part of this PR's scope.
This reverts commit fd5206cc55.
Fixing the test case would require some awkard %if use that I'm not
sure would even work, or splitting it into 2 copies that are almost
identical.
Instead, always add -m for clang, which allows it for all targets,
but not for gcc which does not.
This option is definitely needed for x86_64, and is valid for PowerPC
and s390x too.
I'm using "in" because on Armv8 Linux the uname is actually "armv8l"
not just "arm".
After https://github.com/llvm/llvm-project/pull/68052 this function changed from returning
a nullptr with `return {};` to returning Expected and hitting `llvm_unreachable` before it could
do so.
I gather that we're never supposed to call this function, but on Windows we actually do call
this function because `interpreter->CreateScriptedProcessInterface()` returns
`ScriptedProcessInterface` not `ScriptedProcessPythonInterface`. Likely because
`target_sp->GetDebugger().GetScriptInterpreter()` also does not return a Python related class.
The previously XFAILed test crashed with:
```
# .---command stderr------------
# | PLEASE submit a bug report to https://github.com/llvm/llvm-project/issues/ and include the crash backtrace.
# | Stack dump:
# | 0. Program arguments: c:\\users\\tcwg\\david.spickett\\build-llvm\\bin\\lldb-test.exe ir-memory-map C:\\Users\\tcwg\\david.spickett\\build-llvm\\tools\\lldb\\test\\Shell\\Expr\\Output\\TestIRMemoryMapWindows.test.tmp C:\\Users\\tcwg\\david.spickett\\llvm-project\\lldb\\test\\Shell\\Expr/Inputs/ir-memory-map-basic
# | 1. HandleCommand(command = "run")
# | Exception Code: 0xC000001D
# | #0 0x00007ff696b5f588 lldb_private::ScriptedProcessInterface::CreatePluginObject(class llvm::StringRef, class lldb_private::ExecutionContext &, class std::shared_ptr<class lldb_private::StructuredData::Dictionary>, class lldb_private::StructuredData::Generic *) C:\Users\tcwg\david.spickett\llvm-project\lldb\include\lldb\Interpreter\Interfaces\ScriptedProcessInterface.h:28:0
# | #1 0x00007ff696b1d808 llvm::Expected<std::shared_ptr<lldb_private::StructuredData::Generic> >::operator bool C:\Users\tcwg\david.spickett\llvm-project\llvm\include\llvm\Support\Error.h:567:0
# | #2 0x00007ff696b1d808 lldb_private::ScriptedProcess::ScriptedProcess(class std::shared_ptr<class lldb_private::Target>, class std::shared_ptr<class lldb_private::Listener>, class lldb_private::ScriptedMetadata const &, class lldb_private::Status &) C:\Users\tcwg\david.spickett\llvm-project\lldb\source\Plugins\Process\scripted\ScriptedProcess.cpp:115:0
# | #3 0x00007ff696b1d124 std::shared_ptr<lldb_private::ScriptedProcess>::shared_ptr C:\Program Files\Microsoft Visual Studio\2022\Preview\VC\Tools\MSVC\14.35.32124\include\memory:1478:0
# | #4 0x00007ff696b1d124 lldb_private::ScriptedProcess::CreateInstance(class std::shared_ptr<class lldb_private::Target>, class std::shared_ptr<class lldb_private::Listener>, class lldb_private::FileSpec const *, bool) C:\Users\tcwg\david.spickett\llvm-project\lldb\source\Plugins\Process\scripted\ScriptedProcess.cpp:61:0
# | #5 0x00007ff69699c8f4 std::_Ptr_base<lldb_private::Process>::_Move_construct_from C:\Program Files\Microsoft Visual Studio\2022\Preview\VC\Tools\MSVC\14.35.32124\include\memory:1237:0
# | #6 0x00007ff69699c8f4 std::shared_ptr<lldb_private::Process>::shared_ptr C:\Program Files\Microsoft Visual Studio\2022\Preview\VC\Tools\MSVC\14.35.32124\include\memory:1534:0
# | #7 0x00007ff69699c8f4 std::shared_ptr<lldb_private::Process>::operator= C:\Program Files\Microsoft Visual Studio\2022\Preview\VC\Tools\MSVC\14.35.32124\include\memory:1594:0
# | #8 0x00007ff69699c8f4 lldb_private::Process::FindPlugin(class std::shared_ptr<class lldb_private::Target>, class llvm::StringRef, class std::shared_ptr<class lldb_private::Listener>, class lldb_private::FileSpec const *, bool) C:\Users\tcwg\david.spickett\llvm-project\lldb\source\Target\Process.cpp:396:0
# | #9 0x00007ff6969bd708 std::_Ptr_base<lldb_private::Process>::_Move_construct_from C:\Program Files\Microsoft Visual Studio\2022\Preview\VC\Tools\MSVC\14.35.32124\include\memory:1237:0
# | #10 0x00007ff6969bd708 std::shared_ptr<lldb_private::Process>::shared_ptr C:\Program Files\Microsoft Visual Studio\2022\Preview\VC\Tools\MSVC\14.35.32124\include\memory:1534:0
# | #11 0x00007ff6969bd708 std::shared_ptr<lldb_private::Process>::operator= C:\Program Files\Microsoft Visual Studio\2022\Preview\VC\Tools\MSVC\14.35.32124\include\memory:1594:0
# | #12 0x00007ff6969bd708 lldb_private::Target::CreateProcess(class std::shared_ptr<class lldb_private::Listener>, class llvm::StringRef, class lldb_private::FileSpec const *, bool) C:\Users\tcwg\david.spickett\llvm-project\lldb\source\Target\Target.cpp:215:0
# | #13 0x00007ff696b13af0 std::_Ptr_base<lldb_private::Process>::_Ptr_base C:\Program Files\Microsoft Visual Studio\2022\Preview\VC\Tools\MSVC\14.35.32124\include\memory:1230:0
# | #14 0x00007ff696b13af0 std::shared_ptr<lldb_private::Process>::shared_ptr C:\Program Files\Microsoft Visual Studio\2022\Preview\VC\Tools\MSVC\14.35.32124\include\memory:1524:0
# | #15 0x00007ff696b13af0 lldb_private::PlatformWindows::DebugProcess(class lldb_private::ProcessLaunchInfo &, class lldb_private::Debugger &, class lldb_private::Target &, class lldb_private::Status &) C:\Users\tcwg\david.spickett\llvm-project\lldb\source\Plugins\Platform\Windows\PlatformWindows.cpp:495:0
# | #16 0x00007ff6969cf590 std::_Ptr_base<lldb_private::Process>::_Move_construct_from C:\Program Files\Microsoft Visual Studio\2022\Preview\VC\Tools\MSVC\14.35.32124\include\memory:1237:0
# | #17 0x00007ff6969cf590 std::shared_ptr<lldb_private::Process>::shared_ptr C:\Program Files\Microsoft Visual Studio\2022\Preview\VC\Tools\MSVC\14.35.32124\include\memory:1534:0
# | #18 0x00007ff6969cf590 std::shared_ptr<lldb_private::Process>::operator= C:\Program Files\Microsoft Visual Studio\2022\Preview\VC\Tools\MSVC\14.35.32124\include\memory:1594:0
# | #19 0x00007ff6969cf590 lldb_private::Target::Launch(class lldb_private::ProcessLaunchInfo &, class lldb_private::Stream *) C:\Users\tcwg\david.spickett\llvm-project\lldb\source\Target\Target.cpp:3274:0
# | #20 0x00007ff696fff82c CommandObjectProcessLaunch::DoExecute(class lldb_private::Args &, class lldb_private::CommandReturnObject &) C:\Users\tcwg\david.spickett\llvm-project\lldb\source\Commands\CommandObjectProcess.cpp:258:0
# | #21 0x00007ff696fab6c0 lldb_private::CommandObjectParsed::Execute(char const *, class lldb_private::CommandReturnObject &) C:\Users\tcwg\david.spickett\llvm-project\lldb\source\Interpreter\CommandObject.cpp:751:0
# `-----------------------------
# error: command failed with exit status: 0xc000001d
```
That might be a bug on the Windows side, or an artifact of how our build is setup,
but whatever it is, having `CreatePluginObject` return an error and
the caller check it, fixes the failing test.
The built lldb can run the script command to use Python, but I'm not sure if that means
anything.
lldb/test/Shell/Breakpoint/breakpoint-command.test adds a python
command, to be executed when a breakpoint hits, that writes out a
number. It then runs, hits the breakpoint and checks that the number is
present exactly once.
The problem is that on some systems the test can be run in a filepath
that happens to contain the number (e.g. auto-generated directory
names). The number is then detected multiple times and the test fails.
This patch fixes the issue by using a string instead, particularly a
string with spaces, which is very unlikely to be auto-generated by any
system.
When the debug info refers to a dwo with relative `DW_AT_comp_dir` and
`DW_AT_dwo_name`, we only print the `DW_AT_comp_dir` in our error
message if we can't find it. This often isn't very helpful, especially
when the `DW_AT_comp_dir` is ".":
```
(lldb) fr v
error: unable to locate .dwo debug file "." for skeleton DIE 0x000000000000003c
```
I'm updating the error message to include both `DW_AT_comp_dir` (if it
exists) and `DW_AT_dwo_name` when the `DW_AT_dwo_name` is relative. The
behavior when `DW_AT_dwo_name` is absolute should be the same.
Rename lldb-vscode to lldb-dap. This change is largely mechanical. The
following substitutions cover the majority of the changes in this
commit:
s/VSCODE/DAP/
s/VSCode/DAP/
s/vscode/dap/
s/g_vsc/g_dap/
Discourse RFC:
https://discourse.llvm.org/t/rfc-rename-lldb-vscode-to-lldb-dap/74075/
## Description
This pull request adds a new `stop-at-user-entry` option to LLDB
`process launch` command, allowing users to launch a process and pause
execution at the entry point of the program (for C-based languages,
`main` function).
## Motivation
This option provides a convenient way to begin debugging a program by
launching it and breaking at the desired entry point.
## Changes Made
- Added `stop-at-user-entry` option to `Options.td` and the
corresponding case in `CommandOptionsProcessLaunch.cpp` (short option is
'm')
- Implemented `GetUserEntryPointName` method in the Language plugins
available at the moment.
- Declared the `CreateBreakpointAtUserEntry` method in the Target API.
- Create Shell test for the command
`command-process-launch-user-entry.test`.
## Usage
`process launch --stop-at-user-entry` or `process launch -m` launches
the process and pauses execution at the entry point of the program.
This reverts commit dc3f758ddc.
Lit decided to show me the least interesting part of the
test output, but from what I gather on Mac OS the DWARF
stays in the object files (https://stackoverflow.com/a/12827463).
So either split DWARF options do nothing or they produce
files I don't know the name of that aren't .dwo, so I'm
skipping these tests on Darwin.
Fixes#28667
There's a bunch of ways to end up building split DWARF where the
DWO file is not next to the program file. On top of that you may
distribute the program in various ways, move files about, switch
machines, flatten the directories, etc.
This change adds a few more strategies to find DWO files:
* Appending the DW_AT_COMP_DIR and DWO name to all the debug
search paths.
* Appending the same to the binary's dir.
* Appending the DWO name (e.g. a/b/foo.dwo) to all the debug
search paths.
* Appending the DWO name to the binary's location.
* Appending the DWO filename (e.g. foo.dwo) to the debug
search paths.
* Appending the DWO filename to the binary's location.
They are applied in that order and some will be skipped
if the DW_AT_COMP_DIR is relative or absolute, same for
the DWO name (though that seems to always be relative).
This uses the setting target.debug-file-search-paths, which
is used for DWP files already.
The added tests likely do not cover every part of the
strategies listed, it's a best effort.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D157609
Fixes `lldb/test/Shell/SymbolFile/NativePDB/inline_sites.test` to use the correct line number now that f2f36c9b29 is causing the inline call site info to be taken into account.
Add support for syntax color highlighting disassembly in LLDB. This
patch relies on 77d1032516, which introduces support for syntax
highlighting in MC.
Currently only AArch64 and X86 have color support, but other interested
backends can adopt WithColor in their respective MCInstPrinter.
Differential revision: https://reviews.llvm.org/D159164
This should fix the test failure in breakpoint_function_callback.test
since SBStructuredData can now display the content of SBStructuredData.
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
This patch adds support to the "Last Exception Backtrace" to the
`crashlog` command.
This metadata is homologous to the "Application Specific Backtrace",
however the format is closer to a regular stack frame.
Since the thread that "contains" the "Last Exception Backtrace" doesn't
really exist, this information is displayed when requesting an extended
backtrace of the crashed thread, similarly to the "Application Specific
Backtrace".
To achieve that, this patch includes some refactors and fixes to the
existing "Application Specific Backtrace" handling.
rdar://113046509
Differential Revision: https://reviews.llvm.org/D157851
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
This patch replace the deprecated `optparse` module used for the
`crashlog`& `save_crashlog` commands with the new `argparse` from the
python standard library. This provides many benefits such as showing the
default values for each option in the help description, but also greatly
improve the handling of position arguments.
Differential Revision: https://reviews.llvm.org/D157849
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
This was "x86-registered-target" which seems to be false in this test
suite despite me having the x86 backend enabled. The other tests use just "x86"
and with that the test passes on my AArch64 machine fine.
Set the halt_on_error runtime flag to make TSan errors fatal when
running the test suite. For the API tests the environment variables are
set conditionally on whether the TSan is enabled. The Shell and Unit
tests don't have that logic but setting the environment variable is
harmless. For consistency, I've also mirrored the ASAN option
(detect_stack_use_after_return=1) for the Shell tests.
Differential revision: https://reviews.llvm.org/D157152
"line 0" in a DWARF linetable means something that doesn't have associated
source. The code for mixed disassembly has a comment indicating that
"line 0" should be skipped, but the wrong value was returned. Fix the return
value and add a test to check that we don't incorrectly show source lines
from the beginning of the file.
Reviewed By: jasonmolenda
Differential Revision: https://reviews.llvm.org/D112931
Currently, lldb's unwinder ignores cfi_restore opcodes for registers
that are not set in the first row of the unwinding info. This prevents
unwinding of failed assertion in Chrome/v8 (https://github.com/v8/v8).
The attached test is an x64 copy of v8's function that failed to unwind
correctly (V8_Fatal).
This patch changes handling of cfi_restore to reset the location if
the first unwind table row does not map the restored register.
Differential Revision: https://reviews.llvm.org/D153043
This patch resolves an issue that currently accounts for the vast
majority of failures on the matrix bot.
Differential Revision: https://reviews.llvm.org/D152872
This was un-XFAILed in `83cb2123be487302070562c45e6eb4955b22c2b4`
due to D144999. Since then D152540 fixed emission of eh_frame's
on Darwin, causing this test to fail again.
Differential Revision: https://reviews.llvm.org/D152806