This revision is needed to support bufferization of `cf.br`/`cf.cond_br`. It will also be useful for better analysis of loop ops.
This revision generalizes `getAliasingOpResults` to `getAliasingValues`. An OpOperand can now not only alias with OpResults but also with BlockArguments. In the case of `cf.br` (will be added in a later revision): a `cf.br` operand will alias with the corresponding argument of the destination block.
If an op does not implement the `BufferizableOpInterface`, the analysis in conservative. It previously assumed that an OpOperand may alias with each OpResult. It now assumes that an OpOperand may alias with each OpResult and each BlockArgument of the entry block.
Differential Revision: https://reviews.llvm.org/D157957
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
4. Some changes have been deleted for the following reasons:
- Some files had a variable also named cast
- Some files had not included a header file that defines the cast
functions
- Some files are definitions of the classes that have the casting
methods, so the code still refers to the method instead of the
function without adding a prefix or removing the method declaration
at the same time.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
mlir/lib/**/IR/\
mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
mlir/test/lib/Dialect/Test/TestTypes.cpp\
mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
mlir/test/lib/Dialect/Test/TestAttributes.cpp\
mlir/unittests/TableGen/EnumsGenTest.cpp\
mlir/test/python/lib/PythonTestCAPI.cpp\
mlir/include/mlir/IR/
```
Differential Revision: https://reviews.llvm.org/D150123
`getAliasingOpOperands`/`getAliasingOpResults` now encodes OpOperand/OpResult, buffer relation and a degree of certainty. E.g.:
```
// aliasingOpOperands(%r) = {(%t, EQUIV, DEFINITE)}
// aliasingOpResults(%t) = {(%r, EQUIV, DEFINITE)}
%r = tensor.insert %f into %t[%idx] : tensor<?xf32>
// aliasingOpOperands(%r) = {(%t0, EQUIV, MAYBE), (%t1, EQUIV, MAYBE)}
// aliasingOpResults(%t0) = {(%r, EQUIV, MAYBE)}
// aliasingOpResults(%t1) = {(%r, EQUIV, MAYBE)}
%r = arith.select %c, %t0, %t1 : tensor<?xf32>
```
`BufferizableOpInterface::bufferRelation` is removed, as it is now part of `getAliasingOpOperands`/`getAliasingOpResults`.
This change allows for better analysis, in particular wrt. equivalence. This allows additional optimizations and better error checking (which is sometimes overly conservative). Examples:
* EmptyTensorElimination can eliminate `tensor.empty` inside `scf.if` blocks. This requires a modeling of equivalence: It is not a per-OpResult property anymore. Instead, it can be specified for each OpOperand and OpResult. This is important because `tensor.empty` may be eliminated only if all values on the SSA use-def chain to the final consumer (`tensor.insert_slice`) are equivalent.
* The detection of "returning allocs from a block" can be improved. (Addresses a TODO in `assertNoAllocsReturned`.) This allows us to bufferize IR such as "yielding a `tensor.extract_slice` result from an `scf.if` branch", which currently fails to bufferize because the alloc detection is too conservative.
* Better bufferization of loops. Aliases of the iter_arg can be yielded (even if they are not equivalent) without having to realloc and copy the entire buffer on each iteration.
The above-mentioned examples are not yet implemented with this change. This change just improves the BufferizableOpInterface, its implementations and related helper functions, so that better aliasing information is available for each op.
Differential Revision: https://reviews.llvm.org/D142129
* `getAliasingOpOperand` => `getAliasingOpOperands`
* `getAliasingOpResult` => `getAliasingOpResults`
Also a few minor code cleanups and better documentation.
Differential Revision: https://reviews.llvm.org/D142979
The name of the method was confusing. It is bufferizesToMemoryWrite, but from the perspective of OpResults.
`bufferizesToMemoryWrite(OpResult)` now supports ops with regions that do not have aliasing OpOperands (such as `scf.if`). These ops no longer need to implement `isMemoryWrite`.
Differential Revision: https://reviews.llvm.org/D141684
The patch adds operations to `BlockAndValueMapping` and renames it to `IRMapping`. When operations are cloned, old operations are mapped to the cloned operations. This allows mapping from an operation to a cloned operation. Example:
```
Operation *opWithRegion = ...
Operation *opInsideRegion = &opWithRegion->front().front();
IRMapping map
Operation *newOpWithRegion = opWithRegion->clone(map);
Operation *newOpInsideRegion = map.lookupOrNull(opInsideRegion);
```
Migration instructions:
All includes to `mlir/IR/BlockAndValueMapping.h` should be replaced with `mlir/IR/IRMapping.h`. All uses of `BlockAndValueMapping` need to be renamed to `IRMapping`.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D139665
Add outline-shape-computation pass. This pass his pass outlines the
shape computation part in high level IR by adding shape.func and
populate corresponding mapping information into ShapeMappingAnalysis.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D131810
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838
This allows for better type inference during bufferization and is in preparation of supporting memory spaces.
Differential Revision: https://reviews.llvm.org/D128579
This is useful because the result type of an op can sometimes be inferred from its body (e.g., `scf.if`). This will be utilized in subsequent changes.
Also introduces a new `getBufferType` interface method on BufferizableOpInterface. This method is useful for computing a bufferized block argument type with respect to OpOperand types of the parent op.
Differential Revision: https://reviews.llvm.org/D128420
With the recent refactorings, this class is no longer needed. We can use BufferizationOptions in all places were BufferizationState was used.
Differential Revision: https://reviews.llvm.org/D127653
Instead of recomputing memref types from tensor types, try to infer them when possible. This results in more precise layout maps.
Differential Revision: https://reviews.llvm.org/D125614
The current dialect registry allows for attaching delayed interfaces, that are added to attrs/dialects/ops/etc.
when the owning dialect gets loaded. This is clunky for quite a few reasons, e.g. each interface type has a
separate tracking structure, and is also quite limiting. This commit refactors this delayed mutation of
dialect constructs into a more general DialectExtension mechanism. This mechanism is essentially a registration
callback that is invoked when a set of dialects have been loaded. This allows for attaching interfaces directly
on the loaded constructs, and also allows for loading new dependent dialects. The latter of which is
extremely useful as it will now enable dependent dialects to only apply in the contexts in which they
are necessary. For example, a dialect dependency can now be conditional on if a user actually needs the
interface that relies on it.
Differential Revision: https://reviews.llvm.org/D120367
This commit moves FuncOp out of the builtin dialect, and into the Func
dialect. This move has been planned in some capacity from the moment
we made FuncOp an operation (years ago). This commit handles the
functional aspects of the move, but various aspects are left untouched
to ease migration: func::FuncOp is re-exported into mlir to reduce
the actual API churn, the assembly format still accepts the unqualified
`func`. These temporary measures will remain for a little while to
simplify migration before being removed.
Differential Revision: https://reviews.llvm.org/D121266
This improves the modularity of the bufferization.
From now on, all ops that do not implement BufferizableOpInterface are considered hoisting barriers. Previously, all ops that do not implement the interface were not considered barriers and such ops had to be marked as barriers explicitly. This was unsafe because we could've hoisted across unknown ops where it was not safe to hoist.
As a side effect, this allows for cleaning up AffineBufferizableOpInterfaceImpl. This build unit no longer needed and can be deleted.
Differential Revision: https://reviews.llvm.org/D121519
The Func has a large number of legacy dependencies carried over from the old
Standard dialect, which was pervasive and contained a large number of varied
operations. With the split of the standard dialect and its demise, a lot of lingering
dead dependencies have survived to the Func dialect. This commit removes a
large majority of then, greatly reducing the dependence surface area of the
Func dialect.
The last remaining operations in the standard dialect all revolve around
FuncOp/function related constructs. This patch simply handles the initial
renaming (which by itself is already huge), but there are a large number
of cleanups unlocked/necessary afterwards:
* Removing a bunch of unnecessary dependencies on Func
* Cleaning up the From/ToStandard conversion passes
* Preparing for the move of FuncOp to the Func dialect
See the discussion at https://discourse.llvm.org/t/standard-dialect-the-final-chapter/6061
Differential Revision: https://reviews.llvm.org/D120624
The only benefit of FunctionPass is that it filters out function
declarations. This isn't enough to justify carrying it around, as we can
simplify filter out declarations when necessary within the pass. We can
also explore with better scheduling primitives to filter out declarations
at the pipeline level in the future.
The definition of FunctionPass is left intact for now to allow time for downstream
users to migrate.
Differential Revision: https://reviews.llvm.org/D117182
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
This has been a TODO for a long time, and it brings about many advantages (namely nice accessors, and less fragile code). The existing overloads that accept ArrayRef are now treated as deprecated and will be removed in a followup (after a small grace period). Most of the upstream MLIR usages have been fixed by this commit, the rest will be handled in a followup.
Differential Revision: https://reviews.llvm.org/D110293
* Remove dependency: Standard --> MemRef
* Add dependencies: GPUToNVVMTransforms --> MemRef, Linalg --> MemRef, MemRef --> Tensor
* Note: The `subtensor_insert_propagate_dest_cast` test case in MemRef/canonicalize.mlir will be moved to Tensor/canonicalize.mlir in a subsequent commit, which moves over the remaining Tensor ops from the Standard dialect to the Tensor dialect.
Differential Revision: https://reviews.llvm.org/D104506
Splitting the memref dialect lead to an introduction of several dependencies
to avoid compilation issues. The canonicalize pass also depends on the
memref dialect, but it shouldn't. This patch resolves the dependencies
and the unintuitive includes are removed. However, the dependency moves
to the constructor of the std dialect.
Differential Revision: https://reviews.llvm.org/D102060
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names. We'll keep the old names around for a
couple weeks to help transitions.
Differential Revision: https://reviews.llvm.org/D99127
This updates the codebase to pass the context when creating an instance of
OwningRewritePatternList, and starts removing extraneous MLIRContext
parameters. There are many many more to be removed.
Differential Revision: https://reviews.llvm.org/D99028
This makes ignoring a result explicit by the user, and helps to prevent accidental errors with dropped results. Marking LogicalResult as no discard was always the intention from the beginning, but got lost along the way.
Differential Revision: https://reviews.llvm.org/D95841
The previous ordering continued to use the original assuming after
replacing it which is not allowed. Now, inline the region from the old
into the new before the replacement.
Differential Revision: https://reviews.llvm.org/D90375
This class represents a rewrite pattern list that has been frozen, and thus immutable. This replaces the uses of OwningRewritePatternList in pattern driver related API, such as dialect conversion. When PDL becomes more prevalent, this API will allow for optimizing a set of patterns once without the need to do this per run of a pass.
Differential Revision: https://reviews.llvm.org/D89104
There are several pieces of pattern rewriting infra in IR/ that really shouldn't be there. This revision moves those pieces to a better location such that they are easier to evolve in the future(e.g. with PDL). More concretely this revision does the following:
* Create a Transforms/GreedyPatternRewriteDriver.h and move the apply*andFold methods there.
The definitions for these methods are already in Transforms/ so it doesn't make sense for the declarations to be in IR.
* Create a new lib/Rewrite library and move PatternApplicator there.
This new library will be focused on applying rewrites, and will also include compiling rewrites with PDL.
Differential Revision: https://reviews.llvm.org/D89103
A "structural" type conversion is one where the underlying ops are
completely agnostic to the actual types involved and simply need to update
their types. An example of this is shape.assuming -- the shape.assuming op
and the corresponding shape.assuming_yield op need to update their types
accordingly to the TypeConverter, but otherwise don't care what type
conversions are happening.
Also, the previous conversion code would not correctly materialize
conversions for the shape.assuming_yield op. This should have caused a
verification failure, but shape.assuming's verifier wasn't calling
RegionBranchOpInterface::verifyTypes (which for reasons can't be called
automatically as part of the trait verification, and requires being
called manually). This patch also adds that verification.
Differential Revision: https://reviews.llvm.org/D89833