Add missing constant propogation folder for SNegate, [Logical]Not.
Implement additional folding when !(!x) for all ops.
This helps for readability of lowered code into SPIR-V.
Part of work for #70704
Add missing constant propogation folder for Bitwise[Or|And|Xor].
Move previous Bitwise[Or|And] fold implementations to
SPIRVCanonicalization for consistency.
Implement additional folding when lhs == rhs and rhs = 0 for Xor. As
well as, update an Xor testcase to account for this introduced folding.
This helps for readability of lowered code into SPIR-V.
Part of work for #70704
Add missing constant propogation folder for LeftShiftLogical,
RightShift[Logical|Arithmetic].
Implement additional folding when Shift value is 0.
This helps for readability of lowered code into SPIR-V.
Part of work for #70704
Add missing constant propogation folder for IAddCarry and
[S|U]MulExtended. Due to currently missing constant value for
spirv.struct the folding is done using canonicalization patterns.
Implement additional folding when rhs is 0 for all ops and when rhs is 1
for UMulExt.
This helps for readability of lowered code into SPIR-V.
Part of work for #70704
Add missing constant propogation folder for [S|U]Mod, [S|U]Div, SRem
Implement additional folding when rhs is 1 for all ops.
This helps for readability of lowered code into SPIR-V.
Part of work for #70704
WebGPU does not currently support extended arithmetic, this is an issue
when we want to lower from SPIR-V. This commit adds a pattern to
transform and emulate spirv.IAddCarry with spirv.IAdd operations
Fixes#65154
Return poison from foldBinary/unary if argument(s) is poison. Add ub dialect as dependency to affected dialects (arith, math, spirv, shape).
Add poison materialization to dialects. Add tests for some ops from each dialect.
Not all affected ops are covered as it will involve a huge copypaste.
Differential Revision: https://reviews.llvm.org/D159013
1-element vectors are not valid in SPIR-V and fail `Bitcast` op verification.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D156207
This PR improves the `spirv::CompositeExtractOp::fold` function by adding a backtracking mechanism.
The updated function can now traverse a chain of `CompositeInsertOp`s to find a match.
Patch By: nbpatel
Reviewed By: kuhar
Differential Revision: https://reviews.llvm.org/D151536
For the cases where we have aliases of `vector<4xf16>` and
`vector<4xf32>`, we need to do casting before composite
construction.
Reviewed By: kuhar
Differential Revision: https://reviews.llvm.org/D143042
Add a folder for LogicalNotEqual when rhs is false. This pattern shows
up after lowering to SPIRV.
Differential Revision: https://reviews.llvm.org/D141163
Fix an off-by-one error in extended umul extension for WebGPU.
Revert to the long multiplication algorithm originally added to wide
integer emulation, which was deleted in D139776. It is much easier
to see why it is correct.
Add runtime tests based on the mlir-vulkan-runner. These run both with
and without umul extension.
Issue: https://github.com/llvm/llvm-project/issues/59563
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D141085
This is needed because WGSL does not yet support extended multiplication
ops.
Set up pattern/pass stuff and handle the first op: `UMulExtended`.
`SMulExtended` handling will go to a separate patch.
Issue: https://github.com/llvm/llvm-project/issues/59563
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D140995
This new option is set to `false` by default. It should be set only in Canonicalizer tests to detect faulty canonicalization patterns. I.e., patterns that prevent the canonicalizer from converging. The canonicalizer should always convergence on such small unit tests that we have in `canonicalize.mlir`.
Two faulty canonicalization patterns were detected and fixed with this change.
Differential Revision: https://reviews.llvm.org/D140873
This commit extends the `ResourceLimitsAttr` to support specifying
a minimal and maximal subgroup size, and extends `EntryPointABIAttr`
to support specifying the requested subgroup size. This is possible
now in Vulkan with the VK_EXT_subgroup_size_control extension.
For OpenCL it's possible to use the `SubgroupSize` execution mode
directly.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D138962
In D134622 the printed form of a pass manager is changed to include the
name of the op that the pass manager is anchored on. This updates the
`-pass-pipeline` argument format to include the anchor op as well, so
that the printed form of a pipeline can be directly passed to
`-pass-pipeline`. In most cases this requires updating
`-pass-pipeline='pipeline'` to
`-pass-pipeline='builtin.module(pipeline)'`.
This also fixes an outdated assert that prevented running a
`PassManager` anchored on `'any'`.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D134900
This reverts commit a2052b8794.
This commit renamed some Vulkan identifiers that shouldn't have been
renamed, e.g., `SPV_KHR_storage_buffer_storage_class`.
Previously we are using IntegerAttr to back all SPIR-V enum
attributes. Therefore we all such attributes are showed like
IntegerAttr in IRs, which is barely readable and breaks
roundtripability of the IR. This commit changes to use
`EnumAttr` as the base directly so that we can have separate
attribute definitions and better IR printing.
Reviewed By: kuhar
Differential Revision: https://reviews.llvm.org/D131311
This further relaxes the requirement to allow aliased resources
to have different primitive types and some are scalars while the
other are vectors.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D131207
This commit extends UnifyAliasedResourcePass to handle the case
where aliased resources have different vector sizes. (It still
requires all scalar types to be of the same bitwidth.) This is
effectively reusing the code for handling different-bitwidth
scalar types.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D130671
This commit fixes spv.CompositeConstruct to assembly to list
operand types to enable vector construction out of smaller vectors.
Validation is also fixed to properly check the cases for vector
construction.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D130669
This is to improve consistency within the SPIR-V dialect and make these ops a bit shorter.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D130280
spv.bitcast from a vector to a scalar expects the lower-numbered
components of the the vector to map to the lower-ordered bits of
the scalar. That actually already matches how little endian stores
data in the memory. So we just need to read and push to the back
of the vector sequentially.
Reviewed By: hanchung
Differential Revision: https://reviews.llvm.org/D128473
This commit extends the UnifyAliasedResourcePass to handle scalar
types of different bitwidths. It requires to get the smaller bitwidth
resource as the canonical resource so that we can avoid subcomponent
load/store. Instead we load/store multiple smaller bitwidth ones.
Reviewed By: hanchung
Differential Revision: https://reviews.llvm.org/D127266
Using 64-bit integer/float type in interface storage classes would
require Int64/Float64 capability, per the Vulkan spec:
```
shaderInt64 specifies whether 64-bit integers (signed and unsigned) are
supported in shader code. If this feature is not enabled, 64-bit integer
types must not be used in shader code. This also specifies whether
shader modules can declare the Int64 capability. Declaring and using
64-bit integers is enabled for all storage classes that SPIR-V allows
with the Int64 capability.
```
This is different from, say, 16-bit element types, where:
```
shaderInt16 specifies whether 16-bit integers (signed and unsigned) are
supported in shader code. If this feature is not enabled, 16-bit integer
types must not be used in shader code. This also specifies whether
shader modules can declare the Int16 capability. However, this only
enables a subset of the storage classes that SPIR-V allows for the Int16
SPIR-V capability: Declaring and using 16-bit integers in the Private,
Workgroup (for non-Block variables), and Function storage classes is
enabled, while declaring them in the interface storage classes (e.g.,
UniformConstant, Uniform, StorageBuffer, Input, Output, and
PushConstant) is not enabled.
```
Reviewed By: hanchung
Differential Revision: https://reviews.llvm.org/D126256
This commit moves FuncOp out of the builtin dialect, and into the Func
dialect. This move has been planned in some capacity from the moment
we made FuncOp an operation (years ago). This commit handles the
functional aspects of the move, but various aspects are left untouched
to ease migration: func::FuncOp is re-exported into mlir to reduce
the actual API churn, the assembly format still accepts the unqualified
`func`. These temporary measures will remain for a little while to
simplify migration before being removed.
Differential Revision: https://reviews.llvm.org/D121266
This is a pass that can be used by downstream consumers directly
to avoid the boilerplate to wrap around the `populate*Patterns`.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D121222
In SPIR-V, resources are represented as global variables that
are bound to certain descriptor. SPIR-V requires those global
variables to be declared as aliased if multiple ones are bound
to the same slot. Such aliased decorations can cause issues
for transcompilers like SPIRV-Cross when converting to source
shading languages like MSL.
So this commit adds a pass to perform analysis of aliased
resources and see if we can unify them into one.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D119872
Historically the builtin dialect has had an empty namespace. This has unfortunately created a very awkward situation, where many utilities either have to special case the empty namespace, or just don't work at all right now. This revision adds a namespace to the builtin dialect, and starts to cleanup some of the utilities to no longer handle empty namespaces. For now, the assembly form of builtin operations does not require the `builtin.` prefix. (This should likely be re-evaluated though)
Differential Revision: https://reviews.llvm.org/D105149
This provides a sizable compile time improvement by seeding
the worklist in an order that leads to less iterations of the
worklist.
This patch only changes the behavior of the Canonicalize pass
itself, it does not affect other passes that use the
GreedyPatternRewrite driver
Differential Revision: https://reviews.llvm.org/D103053