The `test-lower-to-nvvm` pipeline serves as the common and proper
pipeline for nvvm+host compilation, and it's used across our CUDA
integration tests.
This PR updates the `test-lower-to-nvvm` pipeline to `gpu-lower-to-nvvm`
and moves it within `InitAllPasses.h`. The aim is to call it from
Python, also having a standardize compilation process for nvvm.
This change implements the correct *level* sizes set up for the direct
IR codegen fields in the sparse storage scheme. This brings libgen and
codegen together again.
This is step 3 out of 3 to make sparse_tensor.new work for BSR
Previous change no longer properly used the GPU libgen pass (even though
most tests still passed falling back to CPU). This revision puts the
proper pass order into place. Also bit of a cleanup of CPU codegen vs.
libgen setup.
The flag seems to be doing practically the same thing for zero cost and
pinned dma. In addition, the register host is not truly the right zero
cost mechanism according to Thomas. So we are simplifying the setup for
now, until we have a better definition for what to implement and test.
https://github.com/llvm/llvm-project/issues/64316
The vector.extract assembly format currently only contains the source
type, for example:
%1 = vector.extract %0[1] : vector<3x7x8xf32>
it's not immediately obvious if this is the source or result type. This
patch improves the assembly format to make this clearer, so the above
becomes:
%1 = vector.extract %0[1] : vector<7x8xf32> from vector<3x7x8xf32>
Rationale:
A bufferization.alloc_tensor can be directly replaced
with tensor.empty since these are more or less semantically
equivalent. The latter is considered a bit more "pure"
with respect to SSA semantics.
This patch adds an NVPTX compilation path that enables JIT compilation
on NVIDIA targets. The following modifications were performed:
1. Adding a format field to the GPU object attribute, allowing the
translation attribute to use the correct runtime function to load the
module. Likewise, a dictionary attribute was added to add any possible
extra options.
2. Adding the `createObject` method to `GPUTargetAttrInterface`; this
method returns a GPU object from a binary string.
3. Adding the function `mgpuModuleLoadJIT`, which is only available for
NVIDIA GPUs, as there is no equivalent for AMD.
4. Adding the CMake flag `MLIR_GPU_COMPILATION_TEST_FORMAT` to specify
the format to use during testing.
The revert happened due to a build bot failure that threw 'CUDA_ERROR_UNSUPPORTED_PTX_VERSION'.
The failure's root cause was a pass using "+ptx76" for compilation and an old CUDA driver
on the bot. This commit relands the patch with "+ptx60".
Original Gh PR: #65768
Original commit message:
Migrate tests referencing `gpu-to-cubin` to the new compilation workflow
using `TargetAttrs`. The `test-lower-to-nvvm` pass pipeline was modified
to use the new compilation workflow to simplify the introduction of
future tests.
The `createLowerGpuOpsToNVVMOpsPass` function was removed, as it didn't
allow for passing all options available in the `ConvertGpuOpsToNVVMOp`
pass.
Migrate tests referencing `gpu-to-cubin` to the new compilation workflow
using `TargetAttrs`. The `test-lower-to-nvvm` pass pipeline was modified
to use the new compilation workflow to simplify the introduction of
future tests.
The `createLowerGpuOpsToNVVMOpsPass` function was removed, as it didn't
allow for passing all options available in the `ConvertGpuOpsToNVVMOp`
pass.
Reland of the original patch after updating the Python binding tests,
a few CUDA/GPU MLIR tests, and ensuring the assembly format is
round-trippable.
This patch splits the lowering of vector.print into first converting
an n-D print into a loop of scalar prints of the elements, then a second
pass that converts those scalar prints into the runtime calls. The
former is done in VectorToSCF and the latter in VectorToLLVM.
The main reason for this is to allow printing scalable vector types,
which are not possible to fully unroll at compile time, though this
also avoids fully unrolling very large vectors.
To allow VectorToSCF to add the necessary punctuation between vectors
and elements, a "punctuation" attribute has been added to vector.print.
This abstracts calling the runtime functions such as printNewline(),
without leaking the LLVM details into the higher abstraction levels.
For example:
vector.print punctuation <comma>
lowers to
llvm.call @printComma() : () -> ()
The output format and runtime functions remain the same, which avoids
the need to alter a large number of tests (aside from the pipelines).
Reviewed By: awarzynski, c-rhodes, aartbik
Differential Revision: https://reviews.llvm.org/D156519
Reland of the original patch after updating the Python binding tests and
a few CUDA/GPU MLIR tests.
This patch splits the lowering of vector.print into first converting
an n-D print into a loop of scalar prints of the elements, then a second
pass that converts those scalar prints into the runtime calls. The
former is done in VectorToSCF and the latter in VectorToLLVM.
The main reason for this is to allow printing scalable vector types,
which are not possible to fully unroll at compile time, though this
also avoids fully unrolling very large vectors.
To allow VectorToSCF to add the necessary punctuation between vectors
and elements, a "punctuation" attribute has been added to vector.print.
This abstracts calling the runtime functions such as printNewline(),
without leaking the LLVM details into the higher abstraction levels.
For example:
vector.print <comma>
lowers to
llvm.call @printComma() : () -> ()
The output format and runtime functions remain the same, which avoids
the need to alter a large number of tests (aside from the pipelines).
Reviewed By: awarzynski, c-rhodes, aartbik
Differential Revision: https://reviews.llvm.org/D156519
(1) without the check, the results may silently be wrong, so check is needed
(2) add pruning step to guarantee 2:4 property
Note, in the longer run, we may want to split out the pruning step somehow,
or make it optional.
Reviewed By: K-Wu
Differential Revision: https://reviews.llvm.org/D155320
When targeting NVIDIA GPUs, seeing the generated PTX is important. Currently, we don't have simple way to do it.
This work adds dump-ptx to gpu-to-cubin pass. One can use it like `gpu-to-cubin{chip=sm_90 features=+ptx80 dump-ptx}`.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D155166
This is an ongoing series of commits that are reformatting our
Python code.
Reformatting is done with `black`.
If you end up having problems merging this commit because you
have made changes to a python file, the best way to handle that
is to run git checkout --ours <yourfile> and then reformat it
with black.
If you run into any problems, post to discourse about it and
we will try to help.
RFC Thread below:
https://discourse.llvm.org/t/rfc-document-and-standardize-python-code-style
Differential Revision: https://reviews.llvm.org/D150782
(1) minor bug fix in copy back [always nice to run stuff ;-)]
(2) run with and without lib (even though some fall back to CPU)
Reviewed By: wrengr
Differential Revision: https://reviews.llvm.org/D151507
The GPU tests weren't updated when rebasing D150330, so this patch fixes that.
Reviewed By: anlunx
Differential Revision: https://reviews.llvm.org/D150822
This commit is part of the migration of towards the new STEA syntax/design. In particular, this commit includes the following changes:
* Renaming compiler-internal functions/methods:
* `SparseTensorEncodingAttr::{getDimLevelType => getLvlTypes}`
* `Merger::{getDimLevelType => getLvlType}` (for consistency)
* `sparse_tensor::{getDimLevelType => buildLevelType}` (to help reduce confusion vs actual getter methods)
* Renaming external facets to match:
* the STEA parser and printer
* the C and Python bindings
* PyTACO
However, the actual renaming of the `DimLevelType` itself (along with all the "dlt" names) will be handled in a separate commit.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D150330
The host registration is a convenient way to get CUDA kernels
running, but it may be slow and does not work for all buffer
(like global constants). This revision uses the proper alloc
copy dealloc chains for buffers, using asynchronous chains
to increase overlap. The host registration mechanism is
kept under a flag for the output, just for experimentation
purposes while this project ramps up.
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D148682