This commit adds extra assertions to `OperationFolder` and `OpBuilder`
to ensure that the types of the folded SSA values match with the result
types of the op. There used to be checks that discard the folded results
if the types do not match. This commit makes these checks stricter and
turns them into assertions.
Discarding folded results with the wrong type (without failing
explicitly) can hide bugs in op folders. Two such bugs became apparent
in MLIR (and some more in downstream projects) and are fixed with this
change.
Note: The existing type checks were introduced in
https://reviews.llvm.org/D95991.
Migration guide: If you see failing assertions (`folder produced value
of incorrect type`; make sure to run with assertions enabled!), run with
`-debug` or dump the operation right before the failing assertion. This
will point you to the op that has the broken folder. A common mistake is
a mismatch between static/dynamic dimensions (e.g., input has a static
dimension but folded result has a dynamic dimension).
When emitting bytecode, clients can specify a target dialect version to
emit in `BytecodeWriterConfig`. This exposes a target dialect version to
the DialectBytecodeWriter, which can be queried by name and used to
back-deploy attributes, types, and properties.
The TableGen code generator now generates C++ code that returns a single
`OpOperand &` for `get...Mutable` of operands that are not variadic and
not optional. `OpOperand::set`/`assign` can be used to set a value (same
as `MutableOperandRange::assign`). This is safer than
`MutableOperandRange` because only single values (and no longer
`ValueRange`) can be assigned.
E.g.:
```
// Assignment of multiple values to non-variadic operand.
// Before: Compiles, but produces invalid op.
// After: Compilation error.
extractSliceOp.getSourceMutable().assign({v1, v2});
```
This is a follow-up to 8c2bff1ab9 which lazy-initialized the
diagnostic and removed the need to dynamically abandon() an
InFlightDiagnostic. This further simplifies the code to not needed to
return a reference to an InFlightDiagnostic and instead eagerly emit
errors.
Also use `emitError` as name instead of `getDiag` which seems more
explicit and in-line with the common usage.
It was common to see `value.getValue().empty()` or `value.size()`
instead of the idiomatic `value.empty()`.
Depends on D159455
Differential Revision: https://reviews.llvm.org/D159456
Functions are always callable operations and thus every operation
implementing the `FunctionOpInterface` also implements the
`CallableOpInterface`. The only exception was the FuncOp in the toy
example. To make implementation of the `FunctionOpInterface` easier,
this commit lets `FunctionOpInterface` inherit from
`CallableOpInterface` and merges some of their methods. More precisely,
the `CallableOpInterface` has methods to get the argument and result
attributes and a method to get the result types of the callable region.
These methods are always implemented the same way as their analogues in
`FunctionOpInterface` and thus this commit moves all the argument and
result attribute handling methods to the callable interface as well as
the methods to get the argument and result types. The
`FuntionOpInterface` then does not have to declare them as well, but
just inherits them from the `CallableOpInterface`.
Adding the inheritance relation also required to move the
`FunctionOpInterface` from the IR directory to the Interfaces directory
since IR should not depend on Interfaces.
Reviewed By: jpienaar, springerm
Differential Revision: https://reviews.llvm.org/D157988
The current implementation is not very ergonomic or descriptive: It uses `std::optional<unsigned>` where `std::nullopt` represents the parent op and `unsigned` is the region number.
This doesn't give us any useful methods specific to region control flow and makes the code fragile to changes due to now taking the region number into account.
This patch introduces a new type called `RegionBranchPoint`, replacing all uses of `std::optional<unsigned>` in the interface. It can be implicitly constructed from a region or a `RegionSuccessor`, can be compared with a region to check whether the branch point is branching from the parent, adds `isParent` to check whether we are coming from a parent op and adds `RegionSuccessor::parent` as a descriptive way to indicate branching from the parent.
Differential Revision: https://reviews.llvm.org/D159116
Currently, data in `AbstractSparseBackwardDataFlowAnalysis` is
considered to flow one-to-one, in order, from the operands of an op
implementing `CallOpInterface` to the arguments of the function it is
calling.
This understanding of the data flow is inaccurate. The operands of such
an op that forward to the function arguments are obtained using a
method provided by `CallOpInterface` called `getArgOperands()`.
This commit fixes this bug by using `getArgOperands()` instead of
`getOperands()` to get the mapping from operands to function arguments
because not all operands necessarily forward to the function arguments
and even if they do, they don't necessarily have to be in the order in
which they appear in the op. The operands that don't get forwarded are
handled by the newly introduced `visitCallOperand()` function, which
works analogous to the `visitBranchOperand()` function.
This fix is also propagated to liveness analysis that earlier relied on
this incorrect implementation of the sparse backward dataflow analysis
framework and corrects some incorrect assumptions made in it.
Extra cleanup: Improved a comment and removed an unnecessary code line.
Signed-off-by: Srishti Srivastava <srishtisrivastava.ai@gmail.com>
Reviewed By: matthiaskramm, jcai19
Differential Revision: https://reviews.llvm.org/D157261
The verifier incorrectly passed the region number of the predecessor region instead of the successor region to `getSuccessorOperands`. This went unnoticed since all upstream `RegionBranchTerminatorOpInterface` implementations did not make use of the `index` parameter.
Adding an assert to e.g. `scf.condition` to make sure the index is valid or adding a region terminator that passes different operands to different successors immediately causes the verifier to fail as it suddenly gets incorrect types.
This patch fixes the implementation to correctly pass the successor region index.
Differential Revision: https://reviews.llvm.org/D157507
The `RegionBranchOpInterface` had a few fundamental issues caused by the API design of `getSuccessorRegions`.
It always required passing values for the `operands` parameter. This is problematic as the operands parameter actually changes meaning depending on which predecessor `index` is referring to. If coming from a region, you'd have to find a `RegionBranchTerminatorOpInterface` in that region, get its operand count, and then create a `SmallVector` of that size.
This is not only inconvenient, but also error-prone, which has lead to a bug in the implementation of a previously existing `getSuccessorRegions` overload.
Additionally, this made the method dual-use, trying to serve two different use-cases: 1) Trying to determine possible control flow edges between regions and 2) Trying to determine the region being branched to based on constant operands.
This patch fixes these issues by changing the interface methods and adding new ones:
* The `operands` argument of `getSuccessorRegions` has been removed. The method is now only responsible for returning possible control flow edges between regions.
* An optional `getEntrySuccessorRegions` method has been added. This is used to determine which regions are branched to from the parent op based on constant operands of the parent op. By default, it calls `getSuccessorRegions`. This is analogous to `getSuccessorForOperands` from `BranchOpInterface`.
* Add `getSuccessorRegions` to `RegionBranchTerminatorOpInterface`. This is used to get the possible successors of the terminator based on constant operands. By default, it calls the containing `RegionBranchOpInterface`s `getSuccessorRegions` method.
* `getSuccessorEntryOperands` was renamed to `getEntrySuccessorOperands` for consistency.
Differential Revision: https://reviews.llvm.org/D157506
Add a method to the CallOpInterface to get a mutable operand range over
the function arguments. This allows to add, remove, or change the type
of call arguments in a generic manner without having to assume that the
argument operand range is at the end of the operand list, or having to
type switch on all supported concrete operation kinds.
Alternatively, a new OpInterface could be added which inherits from
CallOpInterface and appends it with the mutable variants of the base
interface.
There will be two users of this new function in the beginning:
(1) A few passes in the Arc dialect in CIRCT already use a downstream
implementation of the alternative case mentioned above: https://github.com/llvm/circt/blob/main/include/circt/Dialect/Arc/ArcInterfaces.td#L15
(2) The BufferDeallocation pass will be modified to be able to pass
ownership of memrefs to called private functions if the caller does not
need the memref anymore by appending the function argument list with a
boolean value per memref, thus enabling earlier deallocation of the
memref which can lead to lower peak memory usage.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D156675
Identifiers major and minor are often already taken in POSIX systems due
to their presence in <sys/types.h> as part of the makedev library
function.
This causes compilation failures on FreeBSD and Linux systems with glibc
<2.28.
This change renames the identifiers to major_/minor_.
Differential Revision: https://reviews.llvm.org/D156683
[mlir] Add support for custom readProperties/writeProperties methods.
Currently, operations that opt-in to adopt properties will see auto-generated readProperties/writeProperties methods to emit and parse bytecode. If a dialects opts in to use `usePropertiesForAttributes`, those definitions will be generated for the current definition of the op without the possibility to handle attribute versioning.
The patch adds the capability for an operation to define its own read/write methods for the encoding of properties so that versioned operations can handle upgrading properties encodings.
In addition to this, the patch adds an example showing versioning on NamedProperties through the dialect version API exposed by the reader.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D155340
TestDialect.cpp along with the ODS-generated files amounts to around
100k LoC and takes a significant amount of time to compile. Factor out
the test ops related to testing the sytnax and assembly format, which
are a relatively large and well delimited group, into a separate set of
files.
Also factor out dialect interfaces into a separate file.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D155947
Initial implementations of dense dataflow analyses feature special cases
for operations that have region- or call-based control flow by
leveraging the corresponding interfaces. This is not necessarily
sufficient as these operations may influence the dataflow state by
themselves as well we through the control flow. For example,
`linalg.generic` and similar operations have region-based control flow
and their proper memory effects, so any memory-related analyses such as
last-writer require processing `linalg.generic` directly instead of, or
in addition to, the region-based flow.
Provide hooks to customize the processing of operations with region-
cand call-based contol flow in forward and backward dense dataflow
analysis. These hooks are trigerred when control flow is transferred
between the "main" operation, i.e. the call or the region owner, and
another region. Such an apporach allows the analyses to update the
lattice before and/or after the regions. In the `linalg.generic`
example, the reads from memory are interpreted as happening before the
body region and the writes to memory are interpreted as happening after
the body region. Using these hooks in generic analysis may require
introducing additional interfaces, but for now assume that the specific
analysis have spceial cases for the (rare) operaitons with call- and
region-based control flow that need additional processing.
Reviewed By: Mogball, phisiart
Differential Revision: https://reviews.llvm.org/D155757
Author inferReturnTypeComponents methods with the Op Adaptor by using the InferShapedTypeOpAdaptor.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D155243
Author inferReturnTypes methods with the Op Adaptor by using the InferTypeOpAdaptor.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D155115
This is essentially a follow up to https://reviews.llvm.org/D155072
This adds support for also passing properties as `ref` parameter to `custom`. This requires the property to have been bound previously and will error otherwise. This makes it possible for an implementation of `custom` to take previously parsed data into account, creating nice context-dependent grammars :-)
Differential Revision: https://reviews.llvm.org/D155297
Printing and parsing properties of ops is currently only possible through the `prop-dict` attribute. This forces a specific place that the property is printed at and is generally not very flexible.
This patch adds support for passing properties to the `custom` directive, making it possible to incorporate them with more complex syntax. This makes it possible to parse and print them without generic syntax and without the use of `prop-dict`.
Differential Revision: https://reviews.llvm.org/D155072
This fixes a few custom printers which were printing IR that couldn't be
round-tripped.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D150080
This is adding a new interface (`BytecodeOpInterface`) to allow operations to
opt-in skipping conversion to attribute and serializing properties to native
bytecode.
The scheme relies on a new section where properties are stored in sequence
{ size, serialize_properties }, ...
The operations are storing the index of a properties, a table of offset is
built when loading the properties section the first time.
This is a re-commit of 837d1ce0dc which conflicted with another patch upgrading
the bytecode and the collision wasn't properly resolved before.
Differential Revision: https://reviews.llvm.org/D151065
This reverts commit ca5a12fd69
and follow-up fixes:
df34c288c407dc906883ab80ad0095837d1ce0dc
The first commit was incomplete and broken, I'll prepare a new version
later, in the meantime pull this work out of tree.
This is adding a new interface (`BytecodeOpInterface`) to allow operations to
opt-in skipping conversion to attribute and serializing properties to native
bytecode.
The scheme relies on a new section where properties are stored in sequence
{ size, serialize_properties }, ...
The operations are storing the index of a properties, a table of offset is
built when loading the properties section the first time.
Back-deployment to version prior to 4 are relying on getAttrDictionnary() which
we intend to deprecate and remove: that is putting a de-factor end-of-support
horizon for supporting deployments to version older than 4.
Differential Revision: https://reviews.llvm.org/D151065
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
4. Some changes have been deleted for the following reasons:
- Some files had a variable also named cast
- Some files had not included a header file that defines the cast
functions
- Some files are definitions of the classes that have the casting
methods, so the code still refers to the method instead of the
function without adding a prefix or removing the method declaration
at the same time.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
mlir/lib/**/IR/\
mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
mlir/test/lib/Dialect/Test/TestTypes.cpp\
mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
mlir/test/lib/Dialect/Test/TestAttributes.cpp\
mlir/unittests/TableGen/EnumsGenTest.cpp\
mlir/test/python/lib/PythonTestCAPI.cpp\
mlir/include/mlir/IR/
```
Differential Revision: https://reviews.llvm.org/D150123
We were querying the wrong EncReader along some paths that resulted in
failures depending on if one encountered an Attribute from an unloaded
dialect before encountering an operation from that dialect.
Also fix error where we were able to emit "custom" form for an attribute
without custom form in TestDialect.
Differential Revision: https://reviews.llvm.org/D150260
This new features enabled to dedicate custom storage inline within operations.
This storage can be used as an alternative to attributes to store data that is
specific to an operation. Attribute can also be stored inside the properties
storage if desired, but any kind of data can be present as well. This offers
a way to store and mutate data without uniquing in the Context like Attribute.
See the OpPropertiesTest.cpp for an example where a struct with a
std::vector<> is attached to an operation and mutated in-place:
struct TestProperties {
int a = -1;
float b = -1.;
std::vector<int64_t> array = {-33};
};
More complex scheme (including reference-counting) are also possible.
The only constraint to enable storing a C++ object as "properties" on an
operation is to implement three functions:
- convert from the candidate object to an Attribute
- convert from the Attribute to the candidate object
- hash the object
Optional the parsing and printing can also be customized with 2 extra
functions.
A new options is introduced to ODS to allow dialects to specify:
let usePropertiesForAttributes = 1;
When set to true, the inherent attributes for all the ops in this dialect
will be using properties instead of being stored alongside discardable
attributes.
The TestDialect showcases this feature.
Another change is that we introduce new APIs on the Operation class
to access separately the inherent attributes from the discardable ones.
We envision deprecating and removing the `getAttr()`, `getAttrsDictionary()`,
and other similar method which don't make the distinction explicit, leading
to an entirely separate namespace for discardable attributes.
Recommit d572cd1b06 after fixing python bindings build.
Differential Revision: https://reviews.llvm.org/D141742
This new features enabled to dedicate custom storage inline within operations.
This storage can be used as an alternative to attributes to store data that is
specific to an operation. Attribute can also be stored inside the properties
storage if desired, but any kind of data can be present as well. This offers
a way to store and mutate data without uniquing in the Context like Attribute.
See the OpPropertiesTest.cpp for an example where a struct with a
std::vector<> is attached to an operation and mutated in-place:
struct TestProperties {
int a = -1;
float b = -1.;
std::vector<int64_t> array = {-33};
};
More complex scheme (including reference-counting) are also possible.
The only constraint to enable storing a C++ object as "properties" on an
operation is to implement three functions:
- convert from the candidate object to an Attribute
- convert from the Attribute to the candidate object
- hash the object
Optional the parsing and printing can also be customized with 2 extra
functions.
A new options is introduced to ODS to allow dialects to specify:
let usePropertiesForAttributes = 1;
When set to true, the inherent attributes for all the ops in this dialect
will be using properties instead of being stored alongside discardable
attributes.
The TestDialect showcases this feature.
Another change is that we introduce new APIs on the Operation class
to access separately the inherent attributes from the discardable ones.
We envision deprecating and removing the `getAttr()`, `getAttrsDictionary()`,
and other similar method which don't make the distinction explicit, leading
to an entirely separate namespace for discardable attributes.
Differential Revision: https://reviews.llvm.org/D141742
The revision ensures the newly introduced argument
and result handlers cannot be used for type conversion.
Instead use the existing materializeCallConversion hook to
perform type conversions.
Reviewed By: Dinistro
Differential Revision: https://reviews.llvm.org/D147605
The revision adds the handleArgument and handleResult handlers that
allow users of the inlining interface to implement argument and result
conversions that take argument and result attributes into account. The
motivating use cases for this revision are taken from the LLVM dialect
inliner, which has to copy arguments that are marked as byval and that
also has to consider zeroext / signext when converting integers.
All type conversions are currently handled by the
materializeCallConversion hook. It runs before isLegalToInline and
supports only the introduction of a single cast operation since it may
have to rollback. The new handlers run shortly before and after
inlining and cannot fail. As a result, they can introduce more complex
ir such as copying a struct argument. At the moment, the new hooks
cannot be used to perform type conversions since all type conversions
have to be done using the materializeCallConversion. A follow up
revision will either relax this constraint or drop
materializeCallConversion in favor of the new and more flexible
handlers.
The revision also extends the CallableOpInterface to provide access
to the argument and result attributes if available.
Reviewed By: rriddle, Dinistro
Differential Revision: https://reviews.llvm.org/D145582
A dialect can opt-in to handle versioning through the
`BytecodeDialectInterface`. Few hooks are exposed to the dialect to allow
managing a version encoded into the bytecode file. The version is loaded
lazily and allows to retrieve the version information while parsing the input
IR, and gives an opportunity to each dialect for which a version is present
to perform IR upgrades post-parsing through the `upgradeFromVersion` method.
Custom Attribute and Type encodings can also be upgraded according to the
dialect version using readAttribute and readType methods.
There is no restriction on what kind of information a dialect is allowed to
encode to model its versioning. Currently, versioning is supported only for
bytecode formats.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D143647
This change adds a new helper function `mlir::reifyResultShapes` that calls the corresponding interface method and also checks the result produced by the implementation when running in debug mode. Bugs due to incorrect interface implementations can be difficult to debug.
This helper function also reduces the amount of code needed at call sites: the cast to `ReifyRankedShapedTypeOpInterface` is done in the helper function.
Differential Revision: https://reviews.llvm.org/D145777
`reifyResultShapes` now returns `OpFoldResult`s instead of `Value`s. This is often more efficient because many transformations immediately attempt to extract a constant from the reified values.
Differential Revision: https://reviews.llvm.org/D145250
Remove the IR modification callbacks from `OperationFolder`. Instead, an optional `RewriterBase::Listener` can be specified.
* `processGeneratedConstants` => `notifyOperationCreated`
* `preReplaceAction` => `notifyOperationReplaced`
This simplifies the GreedyPatternRewriterDriver because we no longer need special handling for IR modifications due to op folding.
A folded operation is now enqueued on the GreedyPatternRewriteDriver's worklist if it was modified in-place. (There may be new patterns that apply after folding.)
Also fixes a bug in `TestOpInPlaceFold::fold`. The folder could previously be applied over and over and did not return a "null" OpFoldResult if the IR was not modified. (This is similar to a pattern that returns `success` without modifying IR; it can trigger an infinite loop in the GreedyPatternRewriteDriver.)
Differential Revision: https://reviews.llvm.org/D144463
Mehdi noted in https://reviews.llvm.org/D144391 that given the low cost of keeping the old `fold` method signature working and the difficulty of writing a `FoldAdaptor` oneself, it'd be nice to keep the support for the sake of Ops written manually in C++.
This patch therefore partially reverts the removal of the old `fold` method by still allowing the old signature to be used. The active use of it is still discouraged and ODS will always generate the new method using `FoldAdaptor`s.
I'd also like to note that the previous ought to have broken some manually defined `fold` methods in-tree that are defined here: 23bcd6b862/mlir/include/mlir/Dialect/Affine/IR/AffineOps.h (L245) It seems like these are not part of the regressions tests however...
Differential Revision: https://reviews.llvm.org/D144591
The patch adds operations to `BlockAndValueMapping` and renames it to `IRMapping`. When operations are cloned, old operations are mapped to the cloned operations. This allows mapping from an operation to a cloned operation. Example:
```
Operation *opWithRegion = ...
Operation *opInsideRegion = &opWithRegion->front().front();
IRMapping map
Operation *newOpWithRegion = opWithRegion->clone(map);
Operation *newOpInsideRegion = map.lookupOrNull(opInsideRegion);
```
Migration instructions:
All includes to `mlir/IR/BlockAndValueMapping.h` should be replaced with `mlir/IR/IRMapping.h`. All uses of `BlockAndValueMapping` need to be renamed to `IRMapping`.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D139665
This is part of the RFC for a better fold API: https://discourse.llvm.org/t/rfc-a-better-fold-api-using-more-generic-adaptors/67374
This patch implements the required foldHook changes and the TableGen machinery for generating `fold` method signatures using `FoldAdaptor` for ops, based on the value of `useFoldAPI` of the dialect. It may be one of 2 values, with convenient named constants to create a quasi enum. The new `fold` method will then be generated if `kEmitFoldAdaptorFolder` is used.
Since the new `FoldAdaptor` approach is strictly better than the old signature, part of this patch updates the documentation and all example to encourage use of the new `fold` signature.
Included are also tests exercising the new API, ensuring proper construction of the `FoldAdaptor` and proper generation by TableGen.
Differential Revision: https://reviews.llvm.org/D140886