This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Parsing DWARF expressions currently does not support DW_OPs that are vendor
extensions. With this change expression parsing calls into SymbolFileDWARF for
unknown opcodes, which is the semantically "closest" plugin that we have right
now. Plugins can then extend SymbolFileDWARF to add support for vendor
extensions.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D137247
When a process gets restarted TypeSystem objects associated with it
may get deleted, and any CompilerType objects holding on to a
reference to that type system are a use-after-free in waiting. Because
of the SBAPI, we don't have tight control over where CompilerTypes go
and when they are used. This is particularly a problem in the Swift
plugin, where the scratch TypeSystem can be restarted while the
process is still running. The Swift plugin has a lock to prevent
abuse, but where there's a lock there can be bugs.
This patch changes CompilerType to store a std::weak_ptr<TypeSystem>.
Most of the std::weak_ptr<TypeSystem>* uglyness is hidden by
introducing a wrapper class CompilerType::WrappedTypeSystem that has a
dyn_cast_or_null() method. The only sites that need to know about the
weak pointer implementation detail are the ones that deal with
creating TypeSystems.
rdar://101505232
Differential Revision: https://reviews.llvm.org/D136650
Now that we display an error when users try to get variables, but something in the debug info is preventing variables from showing up, track this with a new bool in each module's statistic information named "debugInfoHadVariableErrors".
This patch modifies the code to track when we have variable errors in a module and adds accessors to get/set this value. This value is used in the module statistics and we added a test to verify this value gets set correctly.
Differential Revision: https://reviews.llvm.org/D134508
Summary:
Many times when debugging variables might not be available even though a user can successfully set breakpoints and stops somewhere. Letting the user know will help users fix these kinds of issues and have a better debugging experience.
Examples of this include:
- enabling -gline-tables-only and being able to set file and line breakpoints and yet see no variables
- unable to open object file for DWARF in .o file debugging for darwin targets due to modification time mismatch or not being able to locate the N_OSO file.
This patch adds an new API to SBValueList:
lldb::SBError lldb::SBValueList::GetError();
object so that if you request a stack frame's variables using SBValueList SBFrame::GetVariables(...), you can get an error the describes why the variables were not available.
This patch adds the ability to get an error back when requesting variables from a lldb_private::StackFrame when calling GetVariableList.
It also now shows an error in response to "frame variable" if we have debug info and are unable to get varialbes due to an error as mentioned above:
(lldb) frame variable
error: "a.o" object from the "/tmp/libfoo.a" archive: either the .o file doesn't exist in the archive or the modification time (0x63111541) of the .o file doesn't match
Reviewers: labath JDevlieghere aadsm yinghuitan jdoerfert sscalpone
Subscribers:
Differential Revision: https://reviews.llvm.org/D133164
Many times when debugging variables might not be available even though a user can successfully set breakpoints and stops somewhere. Letting the user know will help users fix these kinds of issues and have a better debugging experience.
Examples of this include:
- enabling -gline-tables-only and being able to set file and line breakpoints and yet see no variables
- unable to open object file for DWARF in .o file debugging for darwin targets due to modification time mismatch or not being able to locate the N_OSO file.
This patch adds an new API to SBValueList:
lldb::SBError lldb::SBValueList::GetError();
object so that if you request a stack frame's variables using SBValueList SBFrame::GetVariables(...), you can get an error the describes why the variables were not available.
This patch adds the ability to get an error back when requesting variables from a lldb_private::StackFrame when calling GetVariableList.
It also now shows an error in response to "frame variable" if we have debug info and are unable to get varialbes due to an error as mentioned above:
(lldb) frame variable
error: "a.o" object from the "/tmp/libfoo.a" archive: either the .o file doesn't exist in the archive or the modification time (0x63111541) of the .o file doesn't match
Differential Revision: https://reviews.llvm.org/D133164
This reverts commit 967df65a36.
This fixes test/Shell/SymbolFile/NativePDB/find-functions.cpp. When
looking up functions with the PDB plugins, if we are looking for a
full function name, we should use `GetName` to populate the `name`
field instead of `GetLookupName` since `GetName` has the more
complete information.
Context:
When setting a breakpoint by name, we invoke Module::FindFunctions to
find the function(s) in question. However, we use a Module::LookupInfo
to first process the user-provided name and figure out exactly what
we're looking for. When we actually perform the function lookup, we
search for the basename. After performing the search, we then filter out
the results using Module::LookupInfo::Prune. For example, given
a::b::foo we would first search for all instances of foo and then filter
out the results to just names that have a::b::foo in them. As one can
imagine, this involves a lot of debug info processing that we do not
necessarily need to be doing. Instead of doing one large post-processing
step after finding each instance of `foo`, we can filter them as we go
to save time.
Some numbers:
Debugging LLDB and placing a breakpoint on
llvm::itanium_demangle::StringView::begin without this change takes
approximately 70 seconds and resolves 31,920 DIEs. With this change,
placing the breakpoint takes around 30 seconds and resolves 8 DIEs.
Differential Revision: https://reviews.llvm.org/D129682
This ensures that the user is aware that many commands will not work
correctly.
We print the warning only once (per module) to avoid spamming the user
with potentially thousands of error messages.
Differential Revision: https://reviews.llvm.org/D120892
std::chrono::duration types are not thread-safe, and they cannot be
concurrently updated from multiple threads. Currently, we were doing
such a thing (only) in the DWARF indexing code
(DWARFUnit::ExtractDIEsRWLocked), but I think it can easily happen that
someone else tries to update another statistic like this without
bothering to check for thread safety.
This patch changes the StatsDuration type from a simple typedef into a
class in its own right. The class stores the duration internally as
std::atomic<uint64_t> (so it can be updated atomically), but presents it
to its users as the usual chrono type (duration<float>).
Differential Revision: https://reviews.llvm.org/D117474
The new key/value pairs that are added to each module's stats are:
"debugInfoByteSize": The size in bytes of debug info for each module.
"debugInfoIndexTime": The time in seconds that it took to index the debug info.
"debugInfoParseTime": The time in seconds that debug info had to be parsed.
At the top level we add up all of the debug info size, parse time and index time with the following keys:
"totalDebugInfoByteSize": The size in bytes of all debug info in all modules.
"totalDebugInfoIndexTime": The time in seconds that it took to index all debug info if it was indexed for all modules.
"totalDebugInfoParseTime": The time in seconds that debug info was parsed for all modules.
Differential Revision: https://reviews.llvm.org/D112501
This patch fixes a problem introduced by clang change
https://reviews.llvm.org/D95617 and described by
https://bugs.llvm.org/show_bug.cgi?id=50076#c6, where inlined functions
omit unused parameters both in the stack trace and in `frame var`
command. With this patch, the parameters are listed correctly in the
stack trace and in `frame var` command.
Specifically, we parse formal parameters from the abstract version of
inlined functions and use those formal parameters if they are missing
from the concrete version.
Differential Revision: https://reviews.llvm.org/D110571
specifically, ignore addresses that point before the first code section.
This resurrects D87172 with several notable changes:
- it fixes a bug where the early exits in InitializeObject left
m_first_code_address "initialized" to LLDB_INVALID_ADDRESS (0xfff..f),
which caused _everything_ to be ignored.
- it extends the line table fix to function parsing as well, where it
replaces a similar check which was checking the executable permissions
of the section. This was insufficient because some
position-independent elf executables can have an executable segment
mapped at file address zero. (What makes this fix different is that it
checks for the executable-ness of the sections contained within that
segment, and those will not be at address zero.)
- It uses a different test case, with an elf file with near-zero
addresses, and checks for both line table and function parsing.
Differential Revision: https://reviews.llvm.org/D112058
There is no reason why this function should be returning a ConstString.
While modifying these files, I also fixed several instances where
GetPluginName and GetPluginNameStatic were returning different strings.
I am not changing the return type of GetPluginNameStatic in this patch, as that
would necessitate additional changes, and this patch is big enough as it is.
Differential Revision: https://reviews.llvm.org/D111877
This commit has introduced test failures in internal google tests.
Working theory is they are caused by a genuine problem in the patch
which gets tripped by some debug info from system libraries.
Reverting while we try to reproduce the problem in a self-contained
fashion.
This reverts commit 601168e420.
Separates the methods for recursive variable parsing in function
context and non-recursive parsing of global variables.
Differential Revision: https://reviews.llvm.org/D110570
In all these years, we haven't found a use for this function (it has
zero callers). Lets just remove the boilerplate.
Differential Revision: https://reviews.llvm.org/D109600
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Testcases now require Linux as it is needed for -gsplit-dwarf.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
when dealing with -gmodules debug info.
This fixes the bot failures on Darwin.
A recent clang change (presumably https://reviews.llvm.org/D104291)
introduced a bug where .pcm files would identify themselves as
DW_LANG_C_plus_plus, but the .o that references them would identify as
DW_LANG_C_plus_plus_14. While that bug needs to be fixed, too, it
shows that the current strict comparison also isn't meaningful.
rdar://79423225
This patch refactors a good part of the code base turning the usual
FileSpec, Line, Column, CheckInlines, ExactMatch arguments into a
SourceLocationSpec object.
This change is required for a following patch that will add handling of the
column line information when doing symbol resolution.
Differential Revision: https://reviews.llvm.org/D100965
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
I found a few cases where entries in the debug_line for a specific line of code have invalid entries (the address is outside of a code section or no section at all) and also valid entries. When this happens lldb might not set the breakpoint because the first line entry it will find in the line table might be the invalid one and since it's range is "invalid" no location is resolved. To get around this I changed the way we parse the line sequences to ignore those starting at an address under the first code segment.
Greg suggested to implement it this way so we don't need to check all sections for every line sequence.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D87172
Only SymbolFileDWARF::ParseCompileUnit creates a CompileUnit and it uses
DWARFCompileUnit for that.
Differential Revision: https://reviews.llvm.org/D89165
When debugging from a SymbolMap the creation of CompileUnits for the
individual object files is so lazy that RegisterXcodeSDK() is not
invoked at all before the Swift TypeSystem wants to read it. This
patch fixes this by introducing an explicit
SymbolFile::ParseXcodeSDK() call that can be invoked deterministically
before the result is required.
<rdar://problem/62532151+62326862>
https://reviews.llvm.org/D79273
Pavel Labath wrote in D73206:
The internal representation of DebugNames and Apple indexes is fixed by
the relevant (pseudo-)standards, so we can't really change it. The
question is how to efficiently (and cleanly) convert from the internal
representation to some common thing. The conversion from AppleIndex to
DIERef is trivial (which is not surprising as it was the first and the
overall design was optimized for that). With debug_names, the situation
gets more tricky. The internal representation of debug_names uses
CU-relative DIE offsets, but DIERef wants an absolute offset. That means
the index has to do more work to produce the common representation. And
it needs to do that for all results, even though a lot of the index
users are really interested only in a single entry. With the switch to
user_id_t, _all_ indexes would have to do some extra work to encode it,
only for their users to have to immediately decode it back. Having
a iterator/callback based api would allow us to minimize the impact of
that, as it would only need to happen for the entries that are really
used. And /I think/ we could make it interface returns DWARFDies
directly, and each index converts to that using the most direct approach
available.
Jan Kratochvil:
It also makes all the callers shorter as they no longer need to fetch
DWARFDIE from DIERef (and handling if not found by ReportInvalidDIERef)
but the callers are already served DWARFDIE which they need.
In some cases the DWARFDIE had to be fetched both by callee (DWARFIndex
implementation) and caller.
Differential Revision: https://reviews.llvm.org/D77970
Summary:
Currently `SymbolFileDWARF::TypeSet` is a typedef to a `std::set<Type *>`.
In `SymbolFileDWARF::GetTypes` we iterate over a TypeSet variable when finding
types so that logic is non-deterministic as it depends on the actual pointer address values.
This patch changes the `TypeSet` to a `llvm::UniqueVector` which always iterates in
the order in which we inserted the types into the list.
Reviewers: JDevlieghere, aprantl
Reviewed By: JDevlieghere
Subscribers: mgrang, abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D75481
Summary:
When we added support for type units in dwo files, we changed the
"manual" dwarf index to index _all_ dwarf units in the dwo file instead
of just the split unit belonging to our skeleton unit. This was fine for
dwo files, as they contain only a single compile units and type units do
not have a split type unit which would point to them.
However, this does not work for dwp files because, these files do
contain multiple split compile units, and the current approach means
that each unit gets indexed multiple times (once for each split unit =>
n^2 complexity).
This patch teaches the manual dwarf index to treat dwp files specially.
Any type units in the dwp file added to the main list of compile units
and indexed with them in a single batch. Split compile units in dwp
files are still indexed as a part of their skeleton unit -- this is done
because we need the DW_AT_language attribute from the skeleton unit to
index them properly.
Handling of dwo files remains unchanged -- all units (type and skeleton)
are indexed when we reach the dwo file through the split unit.
Reviewers: clayborg, JDevlieghere, aprantl
Subscribers: arphaman, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74964
Change the return value of SymbolFileDWARF::DebugInfo from a pointer to
a reference, and remove all null checks.
Previously, we were not constructing the DebugInfo object when the
debug_info section was empty. Now we always construct the object but
it will return an empty list of dwarf units (a thing which it already
supported).