Commit Graph

60 Commits

Author SHA1 Message Date
Kazu Hirata
1a36588ec6 [mlir] Use std::nullopt instead of None (NFC)
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated.  The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.

This is part of an effort to migrate from llvm::Optional to
std::optional:

https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
2022-12-03 18:50:27 -08:00
Javier Setoain
8199a43a89 [mlir][Affine] Add pass options to supervectorizer
The only current options to create a supervectorization pass from an
external dialect is to use `createSuperVectorizePass` with the virtual
vector dimensions as a parameter, but the pass accepts other parameters.

This patch enables external users to create a supervectorizer pass
exposing all available option.

Differential Revision: https://reviews.llvm.org/D134632
2022-10-03 10:50:31 +01:00
Jakub Kuderski
abc362a107 [mlir][arith] Change dialect name from Arithmetic to Arith
Suggested by @lattner in https://discourse.llvm.org/t/rfc-define-precise-arith-semantics/65507/22.

Tested with:
`ninja check-mlir check-mlir-integration check-mlir-mlir-spirv-cpu-runner check-mlir-mlir-vulkan-runner check-mlir-examples`

and `bazel build --config=generic_clang @llvm-project//mlir:all`.

Reviewed By: lattner, Mogball, rriddle, jpienaar, mehdi_amini

Differential Revision: https://reviews.llvm.org/D134762
2022-09-29 11:23:28 -04:00
Michele Scuttari
67d0d7ac0a [MLIR] Update pass declarations to new autogenerated files
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.

Reviewed By: mehdi_amini, rriddle

Differential Review: https://reviews.llvm.org/D132838
2022-08-31 12:28:45 +02:00
Michele Scuttari
039b969b32 Revert "[MLIR] Update pass declarations to new autogenerated files"
This reverts commit 2be8af8f0e.
2022-08-30 22:21:55 +02:00
Michele Scuttari
2be8af8f0e [MLIR] Update pass declarations to new autogenerated files
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.

Reviewed By: mehdi_amini, rriddle

Differential Review: https://reviews.llvm.org/D132838
2022-08-30 21:56:31 +02:00
Kazu Hirata
037f09959a [mlir] Don't use Optional::hasValue (NFC) 2022-06-20 11:22:37 -07:00
Amy Zhuang
5bd4bcfc04 [mlir] Modify SuperVectorize to generate select op->combiner op
Insert the select op before the combiner op when vectorizing a
reduction loop that needs a mask, so the vectorized reduction loop
can pass isLoopParallel check and be transformed correctly in later
passes.

Reviewed By: dcaballe

Differential Revision: https://reviews.llvm.org/D124047
2022-04-21 17:09:13 -07:00
River Riddle
58ceae9561 [mlir:NFC] Remove the forward declaration of FuncOp in the mlir namespace
FuncOp has been moved to the `func` namespace for a little over a month, the
using directive can be dropped now.
2022-04-18 12:01:55 -07:00
Chia-hung Duan
14ecafd0bd [mlir] Make OpBuilder::createOperation to accept raw inputs
This provides a way to create an operation without manipulating
OperationState directly. This is useful for creating unregistered ops.

Reviewed By: rriddle, mehdi_amini

Differential Revision: https://reviews.llvm.org/D120787
2022-03-23 22:13:48 +00:00
Matthias Springer
fe0bf7d469 [mlir][vector][NFC] Use CombiningKindAttr instead of StringAttr
This makes the op consistent with other ops in vector dialect.

Differential Revision: https://reviews.llvm.org/D119343
2022-02-10 19:13:29 +09:00
Cullen Rhodes
99d95025e1 [mlir][Affine][Vector] NFC: fix examples in comments
s/-affine-vectorize/-affine-super-vectorize/g

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D118892
2022-02-08 10:03:32 +00:00
River Riddle
dec8af701f [mlir] Move SelectOp from Standard to Arithmetic
This is part of splitting up the standard dialect. See https://llvm.discourse.group/t/standard-dialect-the-final-chapter/ for discussion.

Differential Revision: https://reviews.llvm.org/D118648
2022-02-02 14:45:12 -08:00
Matthias Springer
99ef9eebad [mlir][vector][NFC] Split into IR, Transforms and Utils
This reduces the dependencies of the MLIRVector target and makes the dialect consistent with other dialects.

Differential Revision: https://reviews.llvm.org/D118533
2022-01-31 19:17:09 +09:00
River Riddle
4157455425 [mlir][Pass] Deprecate FunctionPass in favor of OperationPass<FuncOp>
The only benefit of FunctionPass is that it filters out function
declarations. This isn't enough to justify carrying it around, as we can
simplify filter out declarations when necessary within the pass. We can
also explore with better scheduling primitives to filter out declarations
at the pipeline level in the future.

The definition of FunctionPass is left intact for now to allow time for downstream
users to migrate.

Differential Revision: https://reviews.llvm.org/D117182
2022-01-18 19:52:44 -08:00
River Riddle
755dc07d69 [mlir:Analysis] Move the LoopAnalysis library to Dialect/Affine/Analysis
The current state of the top level Analysis/ directory is that it contains two libraries;
a generic Analysis library (free from dialect dependencies), and a LoopAnalysis library
that contains various analysis utilities that originated from Affine loop transformations.
This commit moves the LoopAnalysis to the more appropriate home of `Dialect/Affine/Analysis/`,
given the use and intention of the majority of the code within it. After the move, if there
are generic utilities that would fit better in the top-level Analysis/ directory, we can move
them.

Differential Revision: https://reviews.llvm.org/D117351
2022-01-18 10:28:22 -08:00
River Riddle
11067d711b [mlir] Optimize OperationName construction and usage
When constructing an OperationName, the overwhelming majority of
cases are from registered operations. This revision adds a non-locked
lookup into the currently registered operations, which prevents locking
in the common case. This revision also optimizes several uses of
RegisteredOperationName that expect the operation to be registered,
e.g. such as in OpBuilder.

These changes provides a reasonable speedup (5-10%) in some
compilations, especially on platforms where locking is expensive.

Differential Revision: https://reviews.llvm.org/D117187
2022-01-13 21:14:36 -08:00
Julian Gross
4b01968b5e [MLIR] Update allocs to memref.allocs in documentation.
Changed the remaining appearances of alloc to memref.alloc in several
documentation sections, since they lead to misunderstandings, if they
are used.

Differential Revision: https://reviews.llvm.org/D116999
2022-01-11 11:22:22 +01:00
Kazu Hirata
e56a9c9b5b Remove redundant return statements (NFC)
Identified by readability-redundant-control-flow.
2022-01-07 07:42:35 -08:00
Mehdi Amini
a9f13f8065 Fix a few unitialized class members in MLIR (NFC)
Flagged by Coverity.
2022-01-01 01:40:36 +00:00
William S. Moses
a6a583dae4 [MLIR] Move AtomicRMW into MemRef dialect and enum into Arith
Per the discussion in https://reviews.llvm.org/D116345 it makes sense
to move AtomicRMWOp out of the standard dialect. This was accentuated by the
need to add a fold op with a memref::cast. The only dialect
that would permit this is the memref dialect (keeping it in the standard dialect
or moving it to the arithmetic dialect would require those dialects to have a
dependency on the memref dialect, which breaks linking).

As the AtomicRMWKind enum is used throughout, this has been moved to Arith.

Reviewed By: Mogball

Differential Revision: https://reviews.llvm.org/D116392
2021-12-30 14:31:33 -05:00
Mehdi Amini
e5639b3fa4 Fix more clang-tidy cleanups in mlir/ (NFC) 2021-12-22 20:53:11 +00:00
Mehdi Amini
be0a7e9f27 Adjust "end namespace" comment in MLIR to match new agree'd coding style
See D115115 and this mailing list discussion:
https://lists.llvm.org/pipermail/llvm-dev/2021-December/154199.html

Differential Revision: https://reviews.llvm.org/D115309
2021-12-08 06:05:26 +00:00
Jacques Pienaar
cfb72fd3a0 [mlir] Switch arith, llvm, std & shape dialects to accessors prefixed both form.
Following
https://llvm.discourse.group/t/psa-ods-generated-accessors-will-change-to-have-a-get-prefix-update-you-apis/4476,
this follows flipping these dialects to _Both prefixed form. This
changes the accessors to have a prefix. This was possibly mostly without
breaking breaking changes if the existing convenience methods were used.

(https://github.com/jpienaar/llvm-project/blob/main/clang-tools-extra/clang-tidy/misc/AddGetterCheck.cpp
was used to migrate the callers post flipping, using the output from
Operator.cpp)

Differential Revision: https://reviews.llvm.org/D112383
2021-10-24 18:36:33 -07:00
Mogball
a54f4eae0e [MLIR] Replace std ops with arith dialect ops
Precursor: https://reviews.llvm.org/D110200

Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.

Renamed all instances of operations in the codebase and in tests.

Reviewed By: rriddle, jpienaar

Differential Revision: https://reviews.llvm.org/D110797
2021-10-13 03:07:03 +00:00
Amy Zhuang
5ce368cfe2 [mlir] Vectorize induction variables
1. Add support to vectorize induction variables of loops that are
   not mapped to any vector dimension in SuperVectorize pass.
2. Fix a bug in getForInductionVarOwner.

Reviewed By: dcaballe

Differential Revision: https://reviews.llvm.org/D111370
2021-10-09 12:40:24 -07:00
Diego Caballero
b7cac864b2 [mlir] Fix typo in SuperVectorizer
NFC.

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D108334
2021-08-18 22:55:12 +00:00
Amy Zhuang
a8b7e56f65 [mlir] Set insertion point of vector constant to the top of the vectorized loop body
When we vectorize a scalar constant, the vector constant is inserted before its
first user if the scalar constant is defined outside the loops to be vectorized.
It is possible that the vector constant does not dominate all its users. To fix
the problem, we find the innermost vectorized loop that encloses that first user
and insert the vector constant at the top of the loop body.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D106609
2021-07-29 15:42:23 -07:00
Sergei Grechanik
d80b04ab00 [mlir][Affine][Vector] Support vectorizing reduction loops
This patch adds support for vectorizing loops with 'iter_args'
implementing known reductions along the vector dimension. Comparing to
the non-vector-dimension case, two additional things are done during
vectorization of such loops:
- The resulting vector returned from the loop is reduced to a scalar
  using `vector.reduce`.
- In some cases a mask is applied to the vector yielded at the end of
  the loop to prevent garbage values from being written to the
  accumulator.

Vectorization of reduction loops is disabled by default. To enable it, a
map from loops to array of reduction descriptors should be explicitly passed to
`vectorizeAffineLoops`, or `vectorize-reductions=true` should be passed
to the SuperVectorize pass.

Current limitations:
- Loops with a non-unit step size are not supported.
- n-D vectorization with n > 1 is not supported.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D100694
2021-05-05 09:03:59 -07:00
Alex Zinenko
545fa37834 [mlir] Affine: parallelize affine loops with reductions
Introduce a basic support for parallelizing affine loops with reductions
expressed using iteration arguments. Affine parallelism detector now has a flag
to assume such reductions are parallel. The transformation handles a subset of
parallel reductions that are can be expressed using affine.parallel:
integer/float addition and multiplication. This requires to detect the
reduction operation since affine.parallel only supports a fixed set of
reduction operators.

Reviewed By: chelini, kumasento, bondhugula

Differential Revision: https://reviews.llvm.org/D101171
2021-04-29 13:16:24 +02:00
Nico Weber
56f987fafe [mlir] yet more iwyu fixes after ba7a92c01e 2021-04-21 10:54:44 -04:00
Diego Caballero
0fd0fb5329 Reland: [mlir][Affine][Vector] Add initial support for 'iter_args' to Affine vectorizer.
This patch adds support for vectorizing loops with 'iter_args' when those loops
are not a vector dimension. This allows vectorizing outer loops with an inner
'iter_args' loop (e.g., reductions). Vectorizing scenarios where 'iter_args'
loops are vector dimensions would require more work (e.g., analysis,
generating horizontal reduction, etc.) not included in this patch.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D97892
2021-03-12 01:08:28 +02:00
Diego Caballero
96891f0418 Reland: [mlir][Vector][Affine] Improve affine vectorizer algorithm
This patch replaces the root-terminal vectorization approach implemented in the
Affine vectorizer with a topological order approach that vectorizes all the
operations within the target loop nest. These are the most important changes
introduced by the new algorithm:
  * Removed tracking of root and terminal ops. Existing vectorization
    functionality is preserved and extended so that loop nests without
    root-terminal chains can be vectorized.
  * Vectorizing a loop nest now only requires a single topological traversal.
  * A new vector loop nest is incrementally built along the vectorization
    process. The original scalar loop is kept intact. No cloning guard is needed
    to recover the scalar loop if vectorization fails. This approach also
    simplifies the challenging task of replacing a loop operation amid the
    vectorization process without invalidating the analysis information that
    depends on the original loop.
  * Vectorization of specific operations has been implemented as independent,
    preparing them to be moved to a potential vectorization interface.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D97442
2021-03-12 00:19:50 +02:00
Diego Caballero
ed193bce9d [mlir][Vector][Affine] Fix heap-use-after-free in vectorizer
This patch fixes a heap-use-after-free introduced by the recent changes
in the vectorizer: https://reviews.llvm.org/rG95db7b4aeaad590f37720898e339a6d54313422f
The problem is due to the way candidate loops are visited. All candidate loops
are pattern-matched beforehand using the 'NestedMatch' utility. These matches may
intersect with each other so it may happen that we try to vectorize a loop that
was previously vectorized. The new vectorization algorithm replaces the original
loops that are vectorized with new loops and, therefore, any reference to the
original loops in the pre-computed matches becomes invalid.

This patch fixes the problem by classifying the candidate matches into buckets
before vectorization. Each bucket contains all the matches that intersect. The
vectorizer uses these buckets to make sure that we only vectorize *one* match from
each bucket, at most.

Differential Revision: https://reviews.llvm.org/D98382
2021-03-11 20:44:07 +02:00
Alex Zinenko
79da91c59a Revert "[mlir][Vector][Affine] Improve affine vectorizer algorithm"
This reverts commit 95db7b4aea.

This breaks vectorize_2d.mlir and vectorize_3d.mlir test under ASAN (use
after free).
2021-03-10 20:25:49 +01:00
Alex Zinenko
ed715536f1 Revert "[mlir][Affine][Vector] Add initial support for 'iter_args' to Affine vectorizer."
This reverts commit 77a9d1549f.

Parent commit is broken.
2021-03-10 20:25:32 +01:00
Diego Caballero
77a9d1549f [mlir][Affine][Vector] Add initial support for 'iter_args' to Affine vectorizer.
This patch adds support for vectorizing loops with 'iter_args' when those loops
are not a vector dimension. This allows vectorizing outer loops with an inner
'iter_args' loop (e.g., reductions). Vectorizing scenarios where 'iter_args'
loops are vector dimensions would require more work (e.g., analysis,
generating horizontal reduction, etc.) not included in this patch.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D97892
2021-03-10 20:40:21 +02:00
Diego Caballero
95db7b4aea [mlir][Vector][Affine] Improve affine vectorizer algorithm
This patch replaces the root-terminal vectorization approach implemented in the
Affine vectorizer with a topological order approach that vectorizes all the
operations within the target loop nest. These are the most important changes
introduced by the new algorithm:
  * Removed tracking of root and terminal ops. Existing vectorization
    functionality is preserved and extended so that loop nests without
    root-terminal chains can be vectorized.
  * Vectorizing a loop nest now only requires a single topological traversal.
  * A new vector loop nest is incrementally built along the vectorization
    process. The original scalar loop is kept intact. No cloning guard is needed
    to recover the scalar loop if vectorization fails. This approach also
    simplifies the challenging task of replacing a loop operation amid the
    vectorization process without invalidating the analysis information that
    depends on the original loop.
  * Vectorization of specific operations has been implemented as independent,
    preparing them to be moved to a potential vectorization interface.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D97442
2021-03-10 20:29:58 +02:00
River Riddle
e21adfa32d [mlir] Mark LogicalResult as LLVM_NODISCARD
This makes ignoring a result explicit by the user, and helps to prevent accidental errors with dropped results. Marking LogicalResult as no discard was always the intention from the beginning, but got lost along the way.

Differential Revision: https://reviews.llvm.org/D95841
2021-02-04 15:10:10 -08:00
Diego Caballero
f9f6b4f30b [mlir] Silence GCC warnings
Reviewed By: mehdi_amini, rriddle

Differential Revision: https://reviews.llvm.org/D95906
2021-02-04 20:54:18 +02:00
Christian Sigg
c4a0405902 Add Operation* OpState::operator->() to provide more convenient access to members of Operation.
Given that OpState already implicit converts to Operator*, this seems reasonable.

The alternative would be to add more functions to OpState which forward to Operation.

Reviewed By: rriddle, ftynse

Differential Revision: https://reviews.llvm.org/D92266
2020-12-02 15:46:20 +01:00
Diego Caballero
93936da904 [mlir][Affine][VectorOps] Fix super vectorizer utility (D85869)
Adding missing code that should have been part of "D85869: Utility to
vectorize loop nest using strategy."

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D88346
2020-09-28 16:24:11 -07:00
Fangrui Song
91671e13ef [mlir] Fix -Wunused-variable in -DLLVM_ENABLE_ASSERTIONS=off build after D85869 2020-09-21 18:34:49 -07:00
Diego Caballero
14d0735d34 [MLIR][Affine][VectorOps] Utility to vectorize loop nest using strategy
This patch adds a utility based on SuperVectorizer to vectorize an
affine loop nest using a given vectorization strategy. This strategy allows
targeting specific loops for vectorization instead of relying of the
SuperVectorizer analysis to choose the right loops to vectorize.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D85869
2020-09-21 16:28:28 -07:00
Diego Caballero
609f5e050c [mlir] Rename 'setInsertionPointAfter' to avoid ambiguity
Rename 'setInsertionPointAfter(Value)' API to avoid ambiguity with
'setInsertionPointAfter(Operation *)' for SingleResult operations which
implicitly convert to Value (see D86756).

Differential Revision: https://reviews.llvm.org/D87155
2020-09-15 13:58:42 -07:00
Diego Caballero
46781630a3 [MLIR][Affine][VectorOps] Vectorize uniform values in SuperVectorizer
This patch adds basic support for vectorization of uniform values to SuperVectorizer.
For now, only invariant values to the target vector loops are considered uniform. This
enables the vectorization of loops that use function arguments and external definitions
to the vector loops. We could extend uniform support in the future if we implement some
kind of divergence analysis algorithm.

Reviewed By: nicolasvasilache, aartbik

Differential Revision: https://reviews.llvm.org/D86756
2020-09-03 01:17:06 +03:00
Diego Caballero
3fff5acd8f [mlir][VectorOps] Expose SuperVectorizer as a utility
This patch refactors a small part of the Super Vectorizer code to
a utility so that it can be used independently from the pass. This
aligns vectorization with other utilities that we already have for loop
transformations, such as fusion, interchange, tiling, etc.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D84289
2020-07-22 14:22:15 -07:00
River Riddle
9db53a1827 [mlir][NFC] Remove usernames and google bug numbers from TODO comments.
These were largely leftover from when MLIR was a google project, and don't really follow LLVM guidelines.
2020-07-07 01:40:52 -07:00
Rahul Joshi
d891d738d9 [MLIR][NFC] Adopt variadic isa<>
Differential Revision: https://reviews.llvm.org/D82489
2020-06-24 17:02:44 -07:00
Nicolas Vasilache
1870e787af [mlir][Vector] Add an optional "masked" boolean array attribute to vector transfer operations
Summary:
Vector transfer ops semantic is extended to allow specifying a per-dimension `masked`
attribute. When the attribute is false on a particular dimension, lowering to LLVM emits
unmasked load and store operations.

Differential Revision: https://reviews.llvm.org/D80098
2020-05-18 11:52:08 -04:00