Commit Graph

53 Commits

Author SHA1 Message Date
Renato Golin
1b99e8ba48 [MLIR] Move JitRunner Options to header, pass to mlirTransformer
This allows the MLIR transformer to see the command line options and
make desicions based on them. No change upstream, but my use-case is to
look at the entry point name and type to make sure I can use them.

Differential Revision: https://reviews.llvm.org/D137861
2022-11-13 18:55:48 +00:00
Emilio Cota
17dbd80ff7 [mlir] Fix typo s/utilties/utilities/ (including in file name)
Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D136887
2022-10-27 17:14:33 -04:00
Denys Shabalin
95c083f579 [mlir] Fix and test python bindings for dump_to_object_file
Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D136334
2022-10-20 15:53:16 +02:00
rkayaith
200889fbd9 [mlir-cpu-runner] Support parsing operations other than 'builtin.module' as top-level
This adds a `--no-implicit-module` option, which disables the insertion
of a top-level `builtin.module` during parsing. The top-level op is
required to have the `SymbolTable` trait.

The majority of the change here is removing `ModuleOp` from interfaces.

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D134238
2022-10-03 15:36:59 -04:00
Mehdi Amini
0969d0de94 Apply clang-tidy fixes for readability-identifier-naming in JitRunner.cpp (NFC) 2022-09-12 10:46:01 +00:00
Rainer Orth
ca98e0dd6c [mlir][test] Require JIT support in JIT tests
A number of mlir tests `FAIL` on Solaris/sparcv9 with `Target has no JIT
support`.  This patch fixes that by mimicing `clang/test/lit.cfg.py` which
implements a `host-supports-jit` keyword for this.  The gtest-based unit
tests don't support `REQUIRES:`, so lack of support needs to be hardcoded
there.

Tested on `amd64-pc-solaris2.11` (`check-mlir` results unchanged) and
`sparcv9-sun-solaris2.11` (only one unrelated failure left).

Differential Revision: https://reviews.llvm.org/D131151
2022-08-18 11:26:07 +02:00
Kazu Hirata
5bc0e7b73c Convert for_each to range-based for loops (NFC) 2022-07-30 10:35:52 -07:00
Kazu Hirata
6d5fc1e3d5 [mlir] Don't use Optional::getValue (NFC) 2022-06-20 23:20:25 -07:00
Fangrui Song
d86a206f06 Remove unneeded cl::ZeroOrMore for cl::opt/cl::list options 2022-06-05 00:31:44 -07:00
Mehdi Amini
4e01184ad5 Apply clang-tidy fixes for performance-unnecessary-value-param in JitRunner.cpp (NFC) 2022-04-19 07:23:12 +00:00
Mehdi Amini
30846d2916 Guard copy of std::function to llvm::function_ref (fix crash)
This is a footgun: assigning a null std::function to a function_ref
does not yield a null function_ref...
2022-04-12 07:44:04 +00:00
Mehdi Amini
07db69effe Use std::function instead of function_ref in MLIR JitRunner
This fixes an ASAN failure.
2022-04-12 07:28:19 +00:00
Arthur Eubanks
7ccd026cf2 Reland [mlir] Remove uses of LLVM's legacy pass manager
Use the new pass manager.

This also removes the ability to run arbitrary sets of passes. Not sure if this functionality is used, but it doesn't seem to be tested.

No need to initialize passes outside of constructing the PassBuilder with the new pass manager.

Reland: Fixed custom calls to `-lower-matrix-intrinsics` in integration tests by replacing them with `-O0 -enable-matrix`.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D123425
2022-04-11 16:53:32 -07:00
Arthur Eubanks
c3efb75061 Revert "[mlir] Remove uses of LLVM's legacy pass manager"
This reverts commit b0f7f6f78d.

Causes test failures: https://lab.llvm.org/buildbot#builders/61/builds/24879
2022-04-11 16:45:19 -07:00
Arthur Eubanks
b0f7f6f78d [mlir] Remove uses of LLVM's legacy pass manager
Use the new pass manager.

This also removes the ability to run arbitrary sets of passes. Not sure if this functionality is used, but it doesn't seem to be tested.

No need to initialize passes outside of constructing the PassBuilder with the new pass manager.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D123425
2022-04-11 16:18:45 -07:00
River Riddle
4a3460a791 [mlir:FunctionOpInterface] Rename the "type" attribute to "function_type"
This removes any potential confusion with the `getType` accessors
which correspond to SSA results of an operation, and makes it
clear what the intent is (i.e. to represent the type of the function).

Differential Revision: https://reviews.llvm.org/D121762
2022-03-16 17:07:04 -07:00
Emilio Cota
b24de9f684 [mlir] ExecutionEngine: default enableObjectCache to false
The enableObjectCache option was added in
https://reviews.llvm.org/rG06e8101034e, defaulting to false. However,
the init code added there got its logic reversed
(cache(enableObjectCache ? nullptr : new SimpleObjectCache()), which was
fixed in https://reviews.llvm.org/rGd1186fcb04 by setting the default to
true, thereby preserving the existing behavior even if it was
unintentional.

Default now the object cache to false as it was originally intended.
While at it, mention in enableObjectCache's documentation how the
cache can be dumped.

Reviewed-by: mehdi_amini
Differential Revision: https://reviews.llvm.org/D121291
2022-03-10 11:24:48 -05:00
River Riddle
9eaff42360 [mlir][NFC] Move Parser.h to Parser/
There is no reason for this file to be at the top-level, and
its current placement predates the Parser/ folder's existence.

Differential Revision: https://reviews.llvm.org/D121024
2022-03-07 01:05:38 -08:00
Christian Sigg
0dc66b76fe [MLIR] Change call sites from deprecated parseSourceFile() to parseSourceFile<ModuleOp>().
Mark `parseSourceFile()` deprecated. The functions will be removed two weeks after landing this change.

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D121075
2022-03-07 06:49:38 +01:00
Emilio Cota
a7db3c611b [mlir][NFC] Use options struct in ExecutionEngine::create
Its number of optional parameters has grown too large,
which makes adding new optional parameters quite a chore.

Fix this by using an options struct.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D120380
2022-02-23 10:21:46 -05:00
Sanjoy Das
8f66ab1c2e Replace OwningModuleRef with OwningOpRef<ModuleOp>
This addresses a TODO in BuiltinOps.h.

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D118574
2022-01-30 14:07:10 -08:00
River Riddle
6842ec42f6 [mlir][NFC] Add a using for llvm::SMLoc/llvm::SMRange to LLVM.h
These are used pervasively during parsing.

Differential Revision: https://reviews.llvm.org/D118291
2022-01-26 21:37:23 -08:00
Mehdi Amini
02b6fb218e Fix clang-tidy issues in mlir/ (NFC)
Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D115956
2021-12-20 20:25:01 +00:00
Mehdi Amini
be0a7e9f27 Adjust "end namespace" comment in MLIR to match new agree'd coding style
See D115115 and this mailing list discussion:
https://lists.llvm.org/pipermail/llvm-dev/2021-December/154199.html

Differential Revision: https://reviews.llvm.org/D115309
2021-12-08 06:05:26 +00:00
Tres Popp
106f307499 Rename MlirExecutionEngine lookup to lookupPacked
The purpose of the change is to make clear whether the user is
retrieving the original function or the wrapper function, in line with
the invoke commands. This new functionality is useful for users that
already have defined their own packed interface, so they do not want the
extra layer of indirection, or for users wanting to the look at the
resulting primary function rather than the wrapper function.

All locations, except the python bindings now have a `lookupPacked`
method that matches the original `lookup` functionality. `lookup`
still exists, but with new semantics.

- `lookup` returns the function with a given name. If `bool f(int,int)`
is compiled, `lookup` will return a reference to `bool(*f)(int,int)`.
- `lookupPacked` returns the packed wrapper of the function with the
given name. If `bool f(int,int)` is compiled, `lookupPacked` will return
`void(*mlir_f)(void**)`.

Differential Revision: https://reviews.llvm.org/D114352
2021-11-22 14:12:09 +01:00
Christian Sigg
c86c96a710 [mlir] Load dynamic libraries in JitRunner from absolute paths so that GDB can find the symbol tables.
Reviewed By: mehdi_amini, ftynse

Differential Revision: https://reviews.llvm.org/D96759
2021-02-19 07:33:35 +01:00
Alex Zinenko
9a08f760fe [mlir] Make JitRunnerMain main take a DialectRegistry
Historically, JitRunner has been registering all available dialects with the
context and depending on them without the real need. Make it take a registry
that contains only the dialects that are expected in the input and stop linking
in all dialects.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D96436
2021-02-11 14:50:48 +01:00
Alex Zinenko
2996a8d675 [mlir] avoid exposing mutable DialectRegistry from MLIRContext
MLIRContext allows its users to access directly to the DialectRegistry it
contains. While sometimes useful for registering additional dialects on an
already existing context, this breaks the encapsulation by essentially giving
raw accesses to a part of the context's internal state. Remove this mutable
access and instead provide a method to append a given DialectRegistry to the
one already contained in the context. Also provide a shortcut mechanism to
construct a context from an already existing registry, which seems to be a
common use case in the wild. Keep read-only access to the registry contained in
the context in case it needs to be copied or used for constructing another
context.

With this change, DialectRegistry is no longer concerned with loading the
dialects and deciding whether to invoke delayed interface registration. Loading
is concentrated in the MLIRContext, and the functionality of the registry
better reflects its name.

Depends On D96137

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D96331
2021-02-10 12:07:34 +01:00
Eugene Zhulenev
1fc986427b [mlir:JitRunner] Use custom shared library init/destroy functions if available
Use custom mlir runner init/destroy functions to safely init and destroy shared libraries loaded by the JitRunner.

This mechanism is ignored for Windows builds (for now) because init/destroy functions are not exported, and library unloading relies on static destructors.

Re-submit https://reviews.llvm.org/D94270 with a temporary workaround for windows

Differential Revision: https://reviews.llvm.org/D94312
2021-01-08 13:16:08 -08:00
Alex Zinenko
dd5165a920 [mlir] replace LLVM dialect float types with built-ins
Continue the convergence between LLVM dialect and built-in types by replacing
the bfloat, half, float and double LLVM dialect types with their built-in
counterparts. At the API level, this is a direct replacement. At the syntax
level, we change the keywords to `bf16`, `f16`, `f32` and `f64`, respectively,
to be compatible with the built-in type syntax. The old keywords can still be
parsed but produce a deprecation warning and will be eventually removed.

Depends On D94178

Reviewed By: mehdi_amini, silvas, antiagainst

Differential Revision: https://reviews.llvm.org/D94179
2021-01-08 17:38:12 +01:00
Eugene Zhulenev
740950cf1c Revert "[mlir:JitRunner] Use custom shared library init/destroy functions if available"
This reverts commit 84dc9b451b.

Fix Windows breakage: http://lab.llvm.org:8011/#/builders/13/builds/3658/steps/6/logs/stdio

Differential Revision: https://reviews.llvm.org/D94309
2021-01-08 07:46:35 -08:00
Eugene Zhulenev
84dc9b451b [mlir:JitRunner] Use custom shared library init/destroy functions if available
Use custom mlir runner init/destroy functions to safely init and destroy shared libraries loaded by the JitRunner.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D94270
2021-01-08 07:14:21 -08:00
Alex Zinenko
2230bf99c7 [mlir] replace LLVMIntegerType with built-in integer type
The LLVM dialect type system has been closed until now, i.e. did not support
types from other dialects inside containers. While this has had obvious
benefits of deriving from a common base class, it has led to some simple types
being almost identical with the built-in types, namely integer and floating
point types. This in turn has led to a lot of larger-scale complexity: simple
types must still be converted, numerous operations that correspond to LLVM IR
intrinsics are replicated to produce versions operating on either LLVM dialect
or built-in types leading to quasi-duplicate dialects, lowering to the LLVM
dialect is essentially required to be one-shot because of type conversion, etc.
In this light, it is reasonable to trade off some local complexity in the
internal implementation of LLVM dialect types for removing larger-scale system
complexity. Previous commits to the LLVM dialect type system have adapted the
API to support types from other dialects.

Replace LLVMIntegerType with the built-in IntegerType plus additional checks
that such types are signless (these are isolated in a utility function that
replaced `isa<LLVMType>` and in the parser). Temporarily keep the possibility
to parse `!llvm.i32` as a synonym for `i32`, but add a deprecation notice.

Reviewed By: mehdi_amini, silvas, antiagainst

Differential Revision: https://reviews.llvm.org/D94178
2021-01-07 19:48:31 +01:00
Alex Zinenko
8de43b926f [mlir] Remove instance methods from LLVMType
LLVMType contains multiple instance methods that were introduced initially for
compatibility with LLVM API. These methods boil down to `cast` followed by
type-specific call. Arguably, they are mostly used in an LLVM cast-follows-isa
anti-pattern. This doesn't connect nicely to the rest of the MLIR
infrastructure and actively prevents it from making the LLVM dialect type
system more open, e.g., reusing built-in types when appropriate. Remove such
instance methods and replaces their uses with apporpriate casts and methods on
derived classes. In some cases, the result may look slightly more verbose, but
most cases should actually use a stricter subtype of LLVMType anyway and avoid
the isa/cast.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D93680
2020-12-22 23:34:54 +01:00
River Riddle
09f7a55fad [mlir][Types][NFC] Move all of the builtin Type classes to BuiltinTypes.h
This is part of a larger refactoring the better congregates the builtin structures under the BuiltinDialect. This also removes the problematic "standard" naming that clashes with the "standard" dialect, which is not defined within IR/. A temporary forward is placed in StandardTypes.h to allow time for downstream users to replaced references.

Differential Revision: https://reviews.llvm.org/D92435
2020-12-03 18:02:10 -08:00
Eugene Zhulenev
f6c9f6eccd [mlir] JitRunner: add a config option to register symbols with ExecutionEngine at runtime
Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D90264
2020-10-27 15:57:34 -07:00
George Mitenkov
89808ce734 [MLIR][mlir-spirv-cpu-runner] A SPIR-V cpu runner prototype
This patch introduces a SPIR-V runner. The aim is to run a gpu
kernel on a CPU via GPU -> SPIRV -> LLVM conversions. This is a first
prototype, so more features will be added in due time.

- Overview
The runner follows similar flow as the other runners in-tree. However,
having converted the kernel to SPIR-V, we encode the bind attributes of
global variables that represent kernel arguments. Then SPIR-V module is
converted to LLVM. On the host side, we emulate passing the data to device
by creating in main module globals with the same symbolic name as in kernel
module. These global variables are later linked with ones from the nested
module. We copy data from kernel arguments to globals, call the kernel
function from nested module and then copy the data back.

- Current state
At the moment, the runner is capable of running 2 modules, nested one in
another. The kernel module must contain exactly one kernel function. Also,
the runner supports rank 1 integer memref types as arguments (to be scaled).

- Enhancement of JitRunner and ExecutionEngine
To translate nested modules to LLVM IR, JitRunner and ExecutionEngine were
altered to take an optional (default to `nullptr`) function reference that
is a custom LLVM IR module builder. This allows to customize LLVM IR module
creation from MLIR modules.

Reviewed By: ftynse, mravishankar

Differential Revision: https://reviews.llvm.org/D86108
2020-10-26 09:09:29 -04:00
Mehdi Amini
e7021232e6 Remove global dialect registration
This has been deprecated for >1month now and removal was announced in:

https://llvm.discourse.group/t/rfc-revamp-dialect-registration/1559/11

Differential Revision: https://reviews.llvm.org/D86356
2020-10-24 00:35:55 +00:00
Mehdi Amini
6a72635881 Revert "Remove global dialect registration"
This reverts commit b22e2e4c6e.

Investigating broken builds
2020-10-23 21:26:48 +00:00
Mehdi Amini
b22e2e4c6e Remove global dialect registration
This has been deprecated for >1month now and removal was announced in:

https://llvm.discourse.group/t/rfc-revamp-dialect-registration/1559/11

Differential Revision: https://reviews.llvm.org/D86356
2020-10-23 20:41:44 +00:00
Christian Sigg
cc83dc191c Import llvm::StringSwitch into mlir namespace.
Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D88971
2020-10-08 11:39:24 +02:00
Mehdi Amini
f9dc2b7079 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-19 01:19:03 +00:00
Mehdi Amini
e75bc5c791 Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit d14cf45735.
The build is broken with GCC-5.
2020-08-19 01:19:03 +00:00
Mehdi Amini
d14cf45735 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-18 23:23:56 +00:00
Mehdi Amini
d84fe55e0d Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit e1de2b7550.
Broke a build bot.
2020-08-18 22:16:34 +00:00
Mehdi Amini
e1de2b7550 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  mlir::registerDialect<mlir::standalone::StandaloneDialect>();
  mlir::registerDialect<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
2020-08-18 21:14:39 +00:00
Mehdi Amini
25ee851746 Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit 2056393387.

Build is broken on a few bots
2020-08-15 09:21:47 +00:00
Mehdi Amini
2056393387 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.

Differential Revision: https://reviews.llvm.org/D85622
2020-08-15 08:07:31 +00:00
Mehdi Amini
ba92dadf05 Revert "Separate the Registration from Loading dialects in the Context"
This was landed by accident, will reland with the right comments
addressed from the reviews.
Also revert dependent build fixes.
2020-08-15 07:35:10 +00:00
Mehdi Amini
ebf521e784 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
2020-08-14 09:40:27 +00:00