This simplifies SymbolTableSection<ELFT>::writeTo. Add dsoProtected to be used
in canDefineSymbolInExecutable and get the side benefit that the protected DSO
preemption diagnostic is clearer.
This change renames this method match its original name and the name
used in the wasm linker.
Back in d8f8abbd4a the ELF SymbolTable
method `getSymbols()` was replaced with `forEachSymbol`.
Then in a2fc964417 `forEachSymbol` was
replaced with a `llvm::iterator_range`.
Then in e9262edf0d we came full circle
and the `llvm::iterator_range` was replaced with a `symbols()` accessor
that was identical the original `getSymbols()`.
`getSymbols` also matches the name used elsewhere in the ELF linker as
well as in both COFF and wasm backend (e.g. `InputFiles.h` and
`SyntheticSections.h`)
Differential Revision: https://reviews.llvm.org/D130787
Some tests (e.g. aarch64-feature-pac.s) segfault in libstdc++ _GLIBCXX_DEBUG
builds (enabled by LLVM_ENABLE_EXPENSIVE_CHECKS).
dyn_cast<ThunkSection> is incorrectly true for any SyntheticSection. std::merge
transitively calls mergeCmp(x, x) (due to __glibcxx_requires_irreflexive_pred)
and will segfault in `ta->getTargetInputSection()`. The dyn_cast<ThunkSection>
issue should be eventually fixed properly, bug `a != b` is robust enough for now.
This simplifies code, removes a read32 (for id==0 check), and makes it feasible
to combine some operations in EhInputSection::split and EhFrameSection::addRecords.
Mostly NFC, but fixes "Relocation not in any piece" assertion failure in an
erroneous case when a relocation offset precedes all CIE/FDE pices.
Alternative to D125036. Implement R_RISCV_ALIGN relaxation so that we can handle
-mrelax object files (i.e. -mno-relax is no longer needed) and creates a
framework for future relaxation.
`relaxAux` is placed in a union with InputSectionBase::jumpInstrMod, storing
auxiliary information for relaxation. In the first pass, `relaxAux` is allocated.
The main data structure is `relocDeltas`: when referencing `relocations[i]`, the
actual offset is `r_offset - (i ? relocDeltas[i-1] : 0)`.
`relaxOnce` performs one relaxation pass. It computes `relocDeltas` for all text
section. Then, adjust st_value/st_size for symbols relative to this section
based on `SymbolAnchor`. `bytesDropped` is set so that `assignAddresses` knows
that the size has changed.
Run `relaxOnce` in the `finalizeAddressDependentContent` loop to wait for
convergence of text sections and other address dependent sections (e.g.
SHT_RELR). Note: extrating `relaxOnce` into a separate loop works for many cases
but has issues in some linker script edge cases.
After convergence, compute section contents: shrink the NOP sequence of each
R_RISCV_ALIGN as appropriate. Instead of deleting bytes, we run a sequence of
memcpy on the content delimitered by relocation locations. For R_RISCV_ALIGN let
the next memcpy skip the desired number of bytes. Section content computation is
parallelizable, but let's ensure the implementation is mature before
optimizations. Technically we can save a copy if we interleave some code with
`OutputSection::writeTo`, but let's not pollute the generic code (we don't have
templated relocation resolving, so using conditions can impose overhead to
non-RISCV.)
Tested:
`make ARCH=riscv CROSS_COMPILE=riscv64-linux-gnu- LLVM=1 defconfig all` built Linux kernel using -mrelax is bootable.
FreeBSD RISCV64 system using -mrelax is bootable.
bash/curl/firefox/libevent/vim/tmux using -mrelax works.
Differential Revision: https://reviews.llvm.org/D127581
Similar to D117734. Take AArch64 as an example when the branch range is +-0x8000000.
getISDThunkSec returns `ts` when `src-0x8000000-r_addend <= tsBase < src-0x8000000`
and the new thunk will be placed in `ts` (`ts->addThunk(t)`). However, the new
thunk (at the end of ts) may be unreachable from src. In the next pass,
`normalizeExistingThunk` reverts the relocation back to the original target.
Then a new thunk is created and the same `ts` is picked as before. The `ts` is
still unreachable.
I have observed it in one test with a sufficiently large r_addend (47664): there
are initially 245 Thunk's, then in each pass 14 new Thunk's are created and get
appended to the unreachable ThunkSection. After 15 passes lld fails with
`thunk creation not converged`.
The new test aarch64-thunk-reuse2.s checks the case.
Without `- pcBias`, arm-thumb-thunk-empty-pass.s and arm-thunk-multipass-plt.s
will fail.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D124653
https://discourse.llvm.org/t/parallel-input-file-parsing/60164
initializeSymbols currently sets Defined::section and handles non-prevailing
COMDAT groups. Move the code to the parallel postParse to reduce work from the
single-threading code path and make parallel section initialization infeasible.
Postpone reporting duplicate symbol errors so that the messages have the
section information. (`Defined::section` is assigned in postParse and another
thread may not have the information).
* duplicated-synthetic-sym.s: BinaryFile duplicate definition (very rare) now
has no section information
* comdat-binding: `%t/w.o %t/g.o` leads to an undesired undefined symbol. This
is not ideal but we report a diagnostic to inform that this is unsupported.
(See release note)
* comdat-discarded-lazy.s: %tdef.o is unextracted. The new behavior (discarded
section error) makes more sense
* i386-comdat.s: switched to a better approach working around
.gnu.linkonce.t.__x86.get_pc_thunk.bx in glibc<2.32 for x86-32.
Drop the ancient no-longer-relevant workaround for __i686.get_pc_thunk.bx
Depends on D120640
Differential Revision: https://reviews.llvm.org/D120626
https://discourse.llvm.org/t/parallel-input-file-parsing/60164
initializeSymbols currently sets Defined::section and handles non-prevailing
COMDAT groups. Move the code to the parallel postParse to reduce work from the
single-threading code path and make parallel section initialization infeasible.
Postpone reporting duplicate symbol errors so that the messages have the
section information. (`Defined::section` is assigned in postParse and another
thread may not have the information).
* duplicated-synthetic-sym.s: BinaryFile duplicate definition (very rare) now
has no section information
* comdat-binding: `%t/w.o %t/g.o` leads to an undesired undefined symbol. This
is not ideal but we report a diagnostic to inform that this is unsupported.
(See release note)
* comdat-discarded-lazy.s: %tdef.o is unextracted. The new behavior (discarded
section error) makes more sense
Depends on D120640
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D120626
Symbol.h depends on InputFiles.h. This change moves us toward dropping the
weird dependency.
The call sites will become slightly uglier (`cast<SharedFile>(s->file)`), but
the compromise is acceptable.
In many call sites we know uncompression cannot happen (non-SHF_ALLOC, or the
data (even if compressed) must have been uncompressed by a previous pass).
Prefer rawData in these cases. data() increases code size and prevents
optimization on rawData.
to decrease sizeof(SymbolUnion) from 72 to 64 on ELF64 platforms.
Use a dummy `Undefined` to prevent null pointer dereference (though unused)
`*rel.sym` in InputSectionBase::relocateAlloc.
The relocation order may shuffle a bit, but otherwise there is no behavior
difference.
Currently `this->getName() == newSym.getName()`.
By keeping the old nameData/nameSize, newSym's nameData/nameSize will be
ignored. The call sites can avoid calling getName().
printTraceSymbol needs to take the symbol name since `other`'s name is empty.
Notation: dst is `t->getThunkTargetSym()->getVA()`
On AArch64, when `src-0x8000000-r_addend <= dst < src-0x8000000`, the condition
`target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend))` may
incorrectly consider a thunk reusable.
`rel.addend = -getPCBias(rel.type)` resets the addend to 0 for AArch64/PPC
and the zero addend is used by `rel.sym->getVA(rel.addend)` to check
out-of-range relocations.
See the test for a case this computation is wrong:
`error: a.o:(.text_high+0x4): relocation R_AARCH64_JUMP26 out of range: -134217732 is not in [-134217728, 134217727]`
I have seen a real world case with r_addend=19960.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D117734
Currently the way some relocation-related static functions pass around
states is clumsy. Add a Resolver class to store some states as member
variables.
Advantages:
* Avoid the parameter `InputSectionBase &sec` (this offsets the cost passing around `this` paramemter)
* Avoid the parameter `end` (Mips and PowerPC hacks)
* `config` and `target` can be cached as member variables to reduce global state accesses. (potential speedup because the compiler didn't know `config`/`target` were not changed across function calls)
* If we ever want to reduce if-else costs (e.g. `config->emachine==EM_MIPS` for non-Mips) or introduce parallel relocation scan not handling some tricky arches (PPC/Mips), we can templatize Resolver
`target` isn't used as much as `config`, so I change it to a const reference
during the migration.
There is a minor performance inprovement for elf::scanRelocations.
Reviewed By: ikudrin, peter.smith
Differential Revision: https://reviews.llvm.org/D116881
We only support both TLSDESC and TLS GD for x86 so this is an x86-specific
problem. If both are used, only one R_X86_64_TLSDESC is produced and TLS GD
accesses will incorrectly reference R_X86_64_TLSDESC. Fix this by introducing
SymbolAux::tlsDescIdx.
Reviewed By: ikudrin
Differential Revision: https://reviews.llvm.org/D116900
to decrease sizeof(SymbolUnion) by 8 on ELF64 platforms.
Symbols needing such information are typically 1% or fewer (5134 out of 560520
when linking clang, 19898 out of 5550705 when linking chrome). Storing them
elsewhere can decrease memory usage and symbol initialization time.
There is a ~0.8% saving on max RSS when linking a large program.
Future direction:
* Move some of dynsymIndex/verdefIndex/versionId to SymbolAux
* Support mixed TLSDESC and TLS GD without increasing sizeof(SymbolUnion)
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D116281
and remove associated make<XXX> calls.
gnuHash and sysvHash are unchanged, otherwise LinkerScript::discard would
destroy the objects which may be referenced by input section descriptions.
My x86-64 lld executable is 121+KiB smaller.
"Process symbol versions" may take 2+% time.
"Redirect symbols" may take 0.6% time.
This change speeds up the two passes and makes `*sym.getVersionSuffix()
== '@'` in the `undefined reference` diagnostic cleaner.
Linking chrome (no debug info) and another large program is 1.5% faster.
For empty-ver2.s: the behavior now matches GNU ld, though I'd consider the input
invalid and the exact behavior does not matter.
This temporarily increases sizeof(SymbolUnion), but allows us to mov GOT/PLT/etc
index members outside Symbol in the future.
Then, we can make TLSDESC and TLSGD use different indexes and support mixed
TLSDESC and TLSGD (tested by x86-64-tlsdesc-gd-mixed.s).
Note: needsTlsGd and needsTlsGdToIe may optionally be combined.
Test updates are due to reordered GOT entries.
It is fairly easy to forget SectionBase::repl after ICF.
Let ICF rewrite a Defined symbol's `section` field to avoid references to
SectionBase::repl in subsequent passes. This slightly improves the --icf=none
performance due to less indirection (maybe for --icf={safe,all} as well if most
symbols are Defined).
With this change, there is only one reference to `repl` (--gdb-index D89751).
We can undo f4fb5fd752 (`Move Repl to SectionBase.`)
but move `repl` to `InputSection` instead.
Reviewed By: ikudrin
Differential Revision: https://reviews.llvm.org/D116093