With the transition to opaque pointers, type information has been
transferred to function parameter attributes. This patch adds correct
parsing for some of those arguments and fixes some tests, that
previously used UnitAttr for those.
Differential Revision: https://reviews.llvm.org/D132366
The attribute is translated into LLVM's function attribute 'readnone'.
There is no explicit verification regarding conflicting 'readnone'
and function attributes from 'passthrough', though, LLVM would assert
if they are incompatible during LLVM IR creation.
Differential Revision: https://reviews.llvm.org/D131457
This patch moves `LLVM::ShuffleVectorOp` to assembly format and in the
process drops the extra type that can be inferred (both operand types
are required to be the same) and switches to a dense integer array.
The syntax change:
```
// Before
%0 = llvm.shufflevector %0, %1 [0 : i32, 0 : i32, 0 : i32, 0 : i32] : vector<4xf32>, vector<4xf32>
// After
%0 = llvm.shufflevector %0, %1 [0, 0, 0, 0] : vector<4xf32>
```
Reviewed By: dcaballe
Differential Revision: https://reviews.llvm.org/D132038
This reland includes changes to the Python bindings.
Switch variadic operand and result segment size attributes to use the
dense i32 array. Dense integer arrays were introduced primarily to
represent index lists. They are a better fit for segment sizes than
dense elements attrs.
Depends on D131801
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D131803
Switch variadic operand and result segment size attributes to use the
dense i32 array. Dense integer arrays were introduced primarily to
represent index lists. They are a better fit for segment sizes than
dense elements attrs.
Depends on D131738
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D131702
This patch "modernizes" the LLVM `insertvalue` and `extractvalue`
operations to use DenseI64ArrayAttr, since they only require an array of
indices and previously there was confusion about whether to use i32 or
i64 arrays, and to use assembly format.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D131537
The implementation and API of GEP Op has gotten a bit convoluted over the time. Issues with it are:
* Misleading naming: `indices` actually only contains the dynamic indices, not all of them. To get the amount of indices you need to query the size of `structIndices`
* Very difficult to iterate over all indices properly: One had to iterate over `structIndices`, check whether it contains the magic constant `kDynamicIndex`, if it does, access the next value in `index` etc.
* Inconvenient to build: One either has create lots of constant ops for every index or have an odd split of passing both a `ValueRange` as well as a `ArrayRef<int32_t>` filled with `kDynamicIndex` at the correct places.
* Implementation doing verification in the build method
and more.
This patch attempts to address all these issues via convenience classes and reworking the way GEP Op works:
* Adds `GEPArg` class which is a sum type of a `int32_t` and `Value` and is used to have a single convenient easy to use `ArrayRef<GEPArg>` in the builders instead of the previous `ValueRange` + `ArrayRef<int32_t>` builders.
* Adds `GEPIndicesAdapter` which is a class used for easy random access and iteration over the indices of a GEP. It is generic and flexible enough to also instead return eg. a corresponding `Attribute` for an operand inside of `fold`.
* Rename `structIndices` to `rawConstantIndices` and `indices` to `dynamicIndices`: `rawConstantIndices` signifies one shouldn't access it directly as it is encoded, and `dynamicIndices` is more accurate and also frees up the `indices` name.
* Add `getIndices` returning a `GEPIndicesAdapter` to easily iterate over the GEP Ops indices.
* Move the verification/asserts out of the build method and into the `verify` method emitting op error messages.
* Add convenient builder methods making use of `GEPArg`.
* Add canonicalizer turning dynamic indices with constant values into constant indices to have a canonical representation.
The only breaking change is for any users building GEPOps that have so far used the old `ValueRange` + `ArrayRef<int32_t>` builder as well as those using the generic syntax.
Another follow up patch then goes through upstream and makes use of the new `ArrayRef<GEPArg>` builder to remove a lot of code building constants for GEP indices.
Differential Revision: https://reviews.llvm.org/D130730
When translating from a llvm::ConstantAggregate with vector type, we
should lower to insertelement operations (if needed) rather than using
insertvalue.
Differential Revision: https://reviews.llvm.org/D127534
This patch supports to convert the llvm intrinsic to the corresponding op. It still leaves some intrinsics to be handled specially.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D126639
This patch adds support for Calling Convention attribute in LLVM
dialect, including enums, custom syntax and import from LLVM IR.
Additionally fix import of dso_local attribute.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D126161
Add support for translating from llvm::Select, llvm::FNeg, and llvm::Unreachable.
This patch also cleans up (NFC) the opcode map for simple instructions and
adds `// clang-format off/on` comments to prevent those lines from being
churned by clang-format between commits.
Differential Revision: https://reviews.llvm.org/D125817
Previously, GEPOp relies on `findKnownStructIndices` to check if a GEP
index should be static. The truth is, `findKnownStructIndices` can only
tell you a GEP index _might_ be indexing into a struct (which should use
a static GEP index). But GEPOp::build and GEPOp::verify are falsely
taking this information as a certain answer, which creates many false
alarms like the one depicted in
`test/Target/LLVMIR/Import/dynamic-gep-index.ll`.
The solution presented here adopts a new verification scheme: When we're
recursively checking the child element types of a struct type, instead
of checking every child types, we only check the one dictated by the
(static) GEP index value. We also combine "refinement" logics --
refine/promote struct index mlir::Value into constants -- into the very
verification process since they have lots of logics in common. The
resulting code is more concise and less brittle.
We also hide GEPOp::findKnownStructIndices since most of the
aforementioned logics are already encapsulated within GEPOp::build and
GEPOp::verify, we found little reason for findKnownStructIndices (or the
new findStructIndices) to be public.
Differential Revision: https://reviews.llvm.org/D124935
Inside processInstruction, we assign the translated mlir::Value to a
reference previously taken from the corresponding entry in instMap.
However, instMap (a DenseMap) might resize after the entry reference was
taken, rendering the assignment useless since it's assigning to a
dangling reference. Here is a (pseudo) snippet that shows the concept:
```
// inst has type llvm::Instruction *
Value &v = instMap[inst];
...
// op is one of the operands of inst, has type llvm::Value *
processValue(op);
// instMap resizes inside processValue
...
translatedValue = b.createOp<Foo>(...);
// v is already a dangling reference at this point!
// The following assignment is bogus.
v = translatedValue;
```
Nevertheless, after we stop caching llvm::Constant into instMap, there
is only one case that can cause processValue to resize instMap: If the
operand is a llvm::ConstantExpr. In which case we will insert the
derived llvm::Instruction into instMap.
To trigger instMap to resize, which is a DenseMap, the threshold depends
on the ratio between # of map entries and # of (hash) buckets. More specifically,
it resizes if (# of map entries / # of buckets) >= 0.75.
In this case # of map entries is equal to # of LLVM instructions, and # of
buckets is the power-of-two upperbound of # of map entries. Thus, eventually
in the attaching test case (test/Target/LLVMIR/Import/incorrect-instmap-assignment.ll),
we picked 96 and 128 for the # of map entries and # of buckets, respectively.
(We can't pick numbers that are too small since DenseMap used inlined
storage for small number of entries). Therefore, the ConstantExpr in the
said test case (i.e. a GEP) is the 96-th llvm::Value cached into the
instMap, triggering the issue we're discussing here on its enclosing
instruction (i.e. a load).
This patch fixes this issue by calling `operator[]` everytime we need to
update an entry.
Differential Revision: https://reviews.llvm.org/D124627
This patch add supports for translating FCmp and more kinds of FP
constants in addition to 32 & 64-bit ones. However, we can't express
ppc_fp128 constants right now because the semantics for its underlying
APFloat is `S_PPCDoubleDouble` but mlir::FloatType doesn't support such
semantics right now.
Differential Revision: https://reviews.llvm.org/D124630
Constants in MLIR are not globally unique, unlike that in LLVM IR.
Therefore, reusing previous-translated constants might cause the user
operations not being dominated by the constant (because the
previous-translated ones can be placed in arbitrary place)
This indeed misses some opportunities where we actually can reuse a
previous-translated constants, but verbosity is not our first priority
here.
Differential Revision: https://reviews.llvm.org/D124404
More specifically, the llvm::Instruction generated by
llvm::ConstantExpr::getAsInstruction. Such Instruction will be deleted
right away, but it's possible that when getAsInstruction is called
again, it will create a new Instruction that has the same address with
the one we just deleted. Thus, we shouldn't keep it in the `instMap` to
avoid a conflicting index that triggers an assertion in
processInstruction.
Differential Revision: https://reviews.llvm.org/D124402
And move importer test files from `test/Target/LLVMIR` into
`test/Target/LLVMIR/Import`.
We simply translate struct-type ConstantAggregate(Zero) into a
serious of `llvm.insertvalue` operations against a `llvm.undef` root.
Note that this doesn't affect the original logics on translating
vector/array-type ConstantAggregate values.
Differential Revision: https://reviews.llvm.org/D124399
LLVM IR is moving towards adoption of opaque pointer types. These require extra
information to be passed when constructing some operations, in particular GEP
and Alloca. Adapt the builders of said operations and modify the translation
code to handle both opaque and non-opaque pointers.
This incidentally adds the translation for Alloca alignment and fixes the translation
of struct-related GEP indices that must be constant.
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D123792
This patch adds thread_local to llvm.mlir.global and adds translation for dso_local and addr_space to and from LLVM IR.
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D123412
This provides a way to create an operation without manipulating
OperationState directly. This is useful for creating unregistered ops.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D120787
Translation.h is currently awkwardly shoved into the top-level mlir, even though it is
specific to the mlir-translate tool. This commit moves it to a new Tools/mlir-translate
directory, which is intended for libraries used to implement tools. It also splits the
translate registry from the main entry point, to more closely mirror what mlir-opt
does.
Differential Revision: https://reviews.llvm.org/D121026
LLVM defines several default datalayouts for integer and floating point types that are not being considered when importing into MLIR. This patch remedies this.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D120832
Add support for translating data layout specifications for integer and float
types between MLIR and LLVM IR. This is a first step towards removing the
string-based LLVM dialect data layout attribute on modules. The latter is still
available and will remain so until the first-class MLIR modeling can fully
replace it.
Depends On D120739
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D120740
This patch simply adds an optional garbage collector attribute to LLVMFuncOp which maps 1:1 to the "gc" property of functions in LLVM.
Differential Revision: https://reviews.llvm.org/D119492
BlockArguments gained the ability to have locations attached a while ago, but they
have always been optional. This goes against the core tenant of MLIR where location
information is a requirement, so this commit updates the API to require locations.
Fixes#53279
Differential Revision: https://reviews.llvm.org/D117633
In LLVM IR, the GEP indices that correspond to structures are required to be
i32 constants. MLIR models constants as just values defined by special
operations, and there is no verification that it is the case for structure
indices in GEP. Furthermore, some common transformations such as control flow
simplification may lead to the operands becoming non-constant. Make it possible
to directly supply constant values to LLVM GEPOp to guarantee they remain
constant until the translation to LLVM IR. This is not yet a requirement and
the verifier is not modified, this will be introduced separately.
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D116757
Currently DenseElementsAttr only exposes the ability to get the full range of values for a given type T, but there are many situations where we just want the beginning/end iterator. This revision adds proper value_begin/value_end methods for all of the supported T types, and also cleans up a bit of the interface.
Differential Revision: https://reviews.llvm.org/D104173
The StringAttr version doesn't need a context, so we can just use the
existing `SymbolRefAttr::get` form. The StringRef version isn't preferred
so we want to encourage people to use StringAttr.
There is an additional form of getSymbolRefAttr that takes a (SymbolTrait
implementing) operation. This should also be moved, but I'll do that as
a separate patch.
Differential Revision: https://reviews.llvm.org/D108922
This commit moves the type translator from LLVM to MLIR to a public header for use by external projects or other code.
Unlike a previous attempt (https://reviews.llvm.org/D104726), this patch moves the type conversion into separate files which remedies the linker error which was only caught by CI.
Differential Revision: https://reviews.llvm.org/D104834
This commit moves the type translator from LLVM to MLIR to a public header for use by external projects or other code
Differential Revision: https://reviews.llvm.org/D104726
First step in adding alignment as an attribute to MLIR global definitions. Alignment can be specified for global objects in LLVM IR. It can also be specified as a named attribute in the LLVMIR dialect of MLIR. However, this attribute has no standing and is discarded during translation from MLIR to LLVM IR. This patch does two things: First, it adds the attribute to the syntax of the llvm.mlir.global operation, and by doing this it also adds accessors and verifications. The syntax is "align=XX" (with XX being an integer), placed right after the value of the operation. Second, it allows transforming this operation to and from LLVM IR. It is checked whether the value is an integer power of 2.
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D101492