River Riddle
35807bc4c5
NFC: Introduce new ValuePtr/ValueRef typedefs to simplify the transition to Value being value-typed.
...
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
2019-12-22 22:00:23 -08:00
Aart Bik
1d47564a53
[VectorOps] unify vector dialect "subscripts"
...
PiperOrigin-RevId: 286650682
2019-12-20 15:33:04 -08:00
Aart Bik
d9b500d3bb
[VectorOps] Add vector.print definition, with lowering support
...
Examples:
vector.print %f : f32
vector.print %x : vector<4xf32>
vector.print %y : vector<3x4xf32>
vector.print %z : vector<2x3x4xf32>
LLVM lowering replaces these with fully unrolled calls
into a small runtime support library that provides some
basic printing operations (single value, opening closing
bracket, comma, newline).
PiperOrigin-RevId: 286230325
2019-12-18 11:31:34 -08:00
Aart Bik
cd5dab8ad7
[VectorOps] Add [insert/extract]element definition together with lowering to LLVM
...
Similar to insert/extract vector instructions but
(1) work on 1-D vectors only
(2) allow for a dynamic index
%c3 = constant 3 : index
%0 = vector.insertelement %arg0, %arg1[%c : index] : vector<4xf32>
%1 = vector.extractelement %arg0[%c3 : index] : vector<4xf32>
PiperOrigin-RevId: 285792205
2019-12-16 09:52:46 -08:00
Aart Bik
1c81adf362
[VectorOps] Add lowering of vector.shuffle to LLVM IR
...
For example, a shuffle
%1 = vector.shuffle %arg0, %arg1 [0 : i32, 1 : i32] : vector<2xf32>, vector<2xf32>
becomes a direct LLVM shuffle
0 = llvm.shufflevector %arg0, %arg1 [0 : i32, 1 : i32] : !llvm<"<2 x float>">, !llvm<"<2 x float>">
but
%1 = vector.shuffle %a, %b[1 : i32, 0 : i32, 2: i32] : vector<1x4xf32>, vector<2x4xf32>
becomes the more elaborate (note the index permutation that drives
argument selection for the extract operations)
%0 = llvm.mlir.undef : !llvm<"[3 x <4 x float>]">
%1 = llvm.extractvalue %arg1[0] : !llvm<"[2 x <4 x float>]">
%2 = llvm.insertvalue %1, %0[0] : !llvm<"[3 x <4 x float>]">
%3 = llvm.extractvalue %arg0[0] : !llvm<"[1 x <4 x float>]">
%4 = llvm.insertvalue %3, %2[1] : !llvm<"[3 x <4 x float>]">
%5 = llvm.extractvalue %arg1[1] : !llvm<"[2 x <4 x float>]">
%6 = llvm.insertvalue %5, %4[2] : !llvm<"[3 x <4 x float>]">
PiperOrigin-RevId: 285268164
2019-12-12 14:11:56 -08:00
Aart Bik
9826fe5c9f
[VectorOps] Add lowering of vector.insert to LLVM IR
...
For example, an insert
%0 = vector.insert %arg0, %arg1[3 : i32] : f32 into vector<4xf32>
becomes
%0 = llvm.mlir.constant(3 : i32) : !llvm.i32
%1 = llvm.insertelement %arg0, %arg1[%0 : !llvm.i32] : !llvm<"<4 x float>">
A more elaborate example, inserting an element in a higher dimension
vector
%0 = vector.insert %arg0, %arg1[3 : i32, 7 : i32, 15 : i32] : f32 into vector<4x8x16xf32>
becomes
%0 = llvm.extractvalue %arg1[3 : i32, 7 : i32] : !llvm<"[4 x [8 x <16 x float>]]">
%1 = llvm.mlir.constant(15 : i32) : !llvm.i32
%2 = llvm.insertelement %arg0, %0[%1 : !llvm.i32] : !llvm<"<16 x float>">
%3 = llvm.insertvalue %2, %arg1[3 : i32, 7 : i32] : !llvm<"[4 x [8 x <16 x float>]]">
PiperOrigin-RevId: 284882443
2019-12-10 17:12:49 -08:00
Aart Bik
d37f27251f
[VecOps] Rename vector.[insert|extract]element to just vector.[insert|extract]
...
Since these operations lower to [insert|extract][element|value] at LLVM
dialect level, neither element nor value would correctly reflect the meaning.
PiperOrigin-RevId: 284240727
2019-12-06 12:39:25 -08:00
Aart Bik
b36aaeafb1
[VectorOps] Add lowering of vector.broadcast to LLVM IR
...
For example, a scalar broadcast
%0 = vector.broadcast %x : f32 to vector<2xf32>
return %0 : vector<2xf32>
which expands scalar x into vector [x,x] by lowering
to the following LLVM IR dialect to implement the
duplication over the leading dimension.
%0 = llvm.mlir.undef : !llvm<"<2 x float>">
%1 = llvm.mlir.constant(0 : index) : !llvm.i64
%2 = llvm.insertelement %x, %0[%1 : !llvm.i64] : !llvm<"<2 x float>">
%3 = llvm.shufflevector %2, %0 [0 : i32, 0 : i32] : !llvm<"<2 x float>">, !llvm<"<2 x float>">
return %3 : vector<2xf32>
In the trailing dimensions, the operand is simply
"passed through", unless a more elaborate "stretch"
is required.
For example
%0 = vector.broadcast %arg0 : vector<1xf32> to vector<4xf32>
return %0 : vector<4xf32>
becomes
%0 = llvm.mlir.undef : !llvm<"<4 x float>">
%1 = llvm.mlir.constant(0 : index) : !llvm.i64
%2 = llvm.extractelement %arg0[%1 : !llvm.i64] : !llvm<"<1 x float>">
%3 = llvm.mlir.constant(0 : index) : !llvm.i64
%4 = llvm.insertelement %2, %0[%3 : !llvm.i64] : !llvm<"<4 x float>">
%5 = llvm.shufflevector %4, %0 [0 : i32, 0 : i32, 0 : i32, 0 : i32] : !llvm<"<4 x float>">, !llvm<"<4 x float>">
llvm.return %5 : !llvm<"<4 x float>">
PiperOrigin-RevId: 284219926
2019-12-06 11:02:29 -08:00
Nicolas Vasilache
5c0c51a997
Refactor dependencies to expose Vector transformations as patterns - NFC
...
This CL refactors some of the MLIR vector dependencies to allow decoupling VectorOps, vector analysis, vector transformations and vector conversions from each other.
This makes the system more modular and allows extracting VectorToVector into VectorTransforms that do not depend on vector conversions.
This refactoring exhibited a bunch of cyclic library dependencies that have been cleaned up.
PiperOrigin-RevId: 283660308
2019-12-03 17:52:10 -08:00