Context: Conversion patterns provide a `ConversionPatternRewriter` to
modify the IR. `ConversionPatternRewriter` provides the public API. Most
function calls are forwarded/handled by `ConversionPatternRewriterImpl`.
The dialect conversion uses the listener infrastructure to get notified
about op/block insertions.
In the current design, `ConversionPatternRewriter` inherits from both
`PatternRewriter` and `Listener`. The conversion rewriter registers
itself as a listener. This is problematic because listener functions
such as `notifyOperationInserted` are now part of the public API and can
be called from conversion patterns; that would bring the dialect
conversion into an inconsistent state.
With this commit, `ConversionPatternRewriter` no longer inherits from
`Listener`. Instead `ConversionPatternRewriterImpl` inherits from
`Listener`. This removes the problematic public API and also simplifies
the code a bit: block/op insertion notifications were previously
forwarded to the `ConversionPatternRewriterImpl`. This is no longer
needed.
Those are probably leftovers from an old name of the same attribute.
Fixed for the sake of consistency.
Co-authored-by: Yoni Lavi <yoni.lavi@nextsilicon.com>
Splits the cleanup block lowered from AsyncToAsyncRuntime.
The incentive of this change is to clarify the CFG branched by
`async.coro.suspend`.
The `async.coro.suspend` op branches into 3 blocks, depending on the
state of the coroutine:
1) suspend
2) resume
3) cleanup
The behavior before this change is that after the coroutine is resumed
and completed, it will jump to a shared cleanup block for destroying the
states of coroutines. The CFG looks like the following,
Entry block
| \
resume |
| |
Cleanup
|
End
This CFG can potentially be problematic, because the `Cleanup` block is
a shared block and it is not dominated by `resume`. For instance, if
some pass wants to add some specific cleanup mechanism to resume, it can
be confused and add them to the shared `Cleanup`, which leads to the
"operand not dominate its use" error because of the existence of the
other "Entry->cleanup" path.
After this change, the CFG will look like the following,
The overall structure of the lowered CFG can be the following,
Entry (calling async.coro.suspend)
| \
Resume Destroy (duplicate of Cleanup)
| |
Cleanup |
| /
End (ends the corontine)
In this case, the Cleanup block tied to the Resume block will be
isolated from the other path and it is strictly dominated by "Resume".
Functions are always callable operations and thus every operation
implementing the `FunctionOpInterface` also implements the
`CallableOpInterface`. The only exception was the FuncOp in the toy
example. To make implementation of the `FunctionOpInterface` easier,
this commit lets `FunctionOpInterface` inherit from
`CallableOpInterface` and merges some of their methods. More precisely,
the `CallableOpInterface` has methods to get the argument and result
attributes and a method to get the result types of the callable region.
These methods are always implemented the same way as their analogues in
`FunctionOpInterface` and thus this commit moves all the argument and
result attribute handling methods to the callable interface as well as
the methods to get the argument and result types. The
`FuntionOpInterface` then does not have to declare them as well, but
just inherits them from the `CallableOpInterface`.
Adding the inheritance relation also required to move the
`FunctionOpInterface` from the IR directory to the Interfaces directory
since IR should not depend on Interfaces.
Reviewed By: jpienaar, springerm
Differential Revision: https://reviews.llvm.org/D157988
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
4. Some changes have been deleted for the following reasons:
- Some files had a variable also named cast
- Some files had not included a header file that defines the cast
functions
- Some files are definitions of the classes that have the casting
methods, so the code still refers to the method instead of the
function without adding a prefix or removing the method declaration
at the same time.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
mlir/lib/**/IR/\
mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
mlir/test/lib/Dialect/Test/TestTypes.cpp\
mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
mlir/test/lib/Dialect/Test/TestAttributes.cpp\
mlir/unittests/TableGen/EnumsGenTest.cpp\
mlir/test/python/lib/PythonTestCAPI.cpp\
mlir/include/mlir/IR/
```
Differential Revision: https://reviews.llvm.org/D150123
```
OpBuilder OpBuilder::Listener
^ ^
| |
RewriterBase RewriterBase::Listener
```
* Clients can listen to IR modifications with `RewriterBase::Listener`.
* `RewriterBase` no longer inherits from `OpBuilder::Listener`.
* Only a single listener can be registered at the moment (same as `OpBuilder`).
RFC: https://discourse.llvm.org/t/rfc-listeners-for-rewriterbase/68198
Differential Revision: https://reviews.llvm.org/D143339
The patch adds operations to `BlockAndValueMapping` and renames it to `IRMapping`. When operations are cloned, old operations are mapped to the cloned operations. This allows mapping from an operation to a cloned operation. Example:
```
Operation *opWithRegion = ...
Operation *opInsideRegion = &opWithRegion->front().front();
IRMapping map
Operation *newOpWithRegion = opWithRegion->clone(map);
Operation *newOpInsideRegion = map.lookupOrNull(opInsideRegion);
```
Migration instructions:
All includes to `mlir/IR/BlockAndValueMapping.h` should be replaced with `mlir/IR/IRMapping.h`. All uses of `BlockAndValueMapping` need to be renamed to `IRMapping`.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D139665
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This change adds async_funcs_only option to AsyncToAsyncRuntimePass. The goal is to convert async functions to regular functions in early stages of compilation pipeline.
Differential Revision: https://reviews.llvm.org/D138611
Remove the eliminateBlockingAwaitOps option in AsyncToAsyncRuntime pass
Today the AsyncToAsyncRuntime pass does two things: one is converting normal funcs with async ops to coroutine cfg; the other is lowering high level async operations to async.coro and async.runtime operations. This patch removes the converting step from AsyncToAsyncRuntime pass.
In the next step we will create a new asyncfication pass for converting normal funcs to the newly added async.func operation.
Reviewed By: ezhulenev
Differential Revision: https://reviews.llvm.org/D137282
This allows for incrementally updating the old API usages without
needing to update everything at once. These will be left on Both
for a little bit and then flipped to prefixed when all APIs have been
updated.
Differential Revision: https://reviews.llvm.org/D134386
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838
This aligns the SCF dialect file layout with the majority of the dialects.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D128049
This removes any potential confusion with the `getType` accessors
which correspond to SSA results of an operation, and makes it
clear what the intent is (i.e. to represent the type of the function).
Differential Revision: https://reviews.llvm.org/D121762
The last remaining operations in the standard dialect all revolve around
FuncOp/function related constructs. This patch simply handles the initial
renaming (which by itself is already huge), but there are a large number
of cleanups unlocked/necessary afterwards:
* Removing a bunch of unnecessary dependencies on Func
* Cleaning up the From/ToStandard conversion passes
* Preparing for the move of FuncOp to the Func dialect
See the discussion at https://discourse.llvm.org/t/standard-dialect-the-final-chapter/6061
Differential Revision: https://reviews.llvm.org/D120624
This fixes bug49264.
Simply, coroutine shouldn't be inlined before CoroSplit. And the marker
for pre-splited coroutine is created in CoroEarly pass, which ran after
AlwaysInliner Pass in O0 pipeline. So that the AlwaysInliner couldn't
detect it shouldn't inline a coroutine. So here is the error.
This patch set the presplit attribute in clang and mlir. So the inliner
would always detect the attribute before splitting.
Reviewed By: rjmccall, ezhulenev
Differential Revision: https://reviews.llvm.org/D115790
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
This has been a TODO for a long time, and it brings about many advantages (namely nice accessors, and less fragile code). The existing overloads that accept ArrayRef are now treated as deprecated and will be removed in a followup (after a small grace period). Most of the upstream MLIR usages have been fixed by this commit, the rest will be handled in a followup.
Differential Revision: https://reviews.llvm.org/D110293
Previously only await inside the async function (coroutine after lowering to async runtime) would check the error state
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D109229
Currently TFRT does not support top-level coroutines, so this functionality will allow to have a single blocking await at the top level until TFRT implements the necessary functionality.
Reviewed By: ezhulenev
Differential Revision: https://reviews.llvm.org/D106730
Interop parallelism requires needs awaiting on results. Blocking awaits are bad for performance. TFRT supports lightweight resumption on threads, and coroutines are an abstraction than can be used to lower the kernels onto TFRT threads.
Reviewed By: ezhulenev
Differential Revision: https://reviews.llvm.org/D106508
Specify the `!async.group` size (the number of tokens that will be added to it) at construction time. `async.await_all` operation can potentially race with `async.execute` operations that keep updating the group, for this reason it is required to know upfront how many tokens will be added to the group.
Reviewed By: ftynse, herhut
Differential Revision: https://reviews.llvm.org/D104780
Depends On D103109
If any of the tokens/values added to the `!async.group` switches to the error state, than the group itself switches to the error state.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D103203
Depends On D103102
Not yet implemented:
1. Error handling after synchronous await
2. Error handling for async groups
Will be addressed in the followup PRs
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D103109
In particular for Graph Regions, the terminator needs is just a
historical artifact of the generalization of MLIR from CFG region.
Operations like Module don't need a terminator, and before Module
migrated to be an operation with region there wasn't any needed.
To validate the feature, the ModuleOp is migrated to use this trait and
the ModuleTerminator operation is deleted.
This patch is likely to break clients, if you're in this case:
- you may iterate on a ModuleOp with `getBody()->without_terminator()`,
the solution is simple: just remove the ->without_terminator!
- you created a builder with `Builder::atBlockTerminator(module_body)`,
just use `Builder::atBlockEnd(module_body)` instead.
- you were handling ModuleTerminator: it isn't needed anymore.
- for generic code, a `Block::mayNotHaveTerminator()` may be used.
Differential Revision: https://reviews.llvm.org/D98468
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names. We'll keep the old names around for a
couple weeks to help transitions.
Differential Revision: https://reviews.llvm.org/D99127