With -platform_version flags for two distinct platforms,
this writes a LC_BUILD_VERSION header for each.
The motivation is that this is needed for self-hosting with lld as linker
after D124059.
To create a zippered output at the clang driver level, pass
-target arm64-apple-macos -darwin-target-variant arm64-apple-ios-macabi
to create a zippered dylib.
(In Xcode's clang, `-darwin-target-variant` is spelled just `-target-variant`.)
(If you pass `-target arm64-apple-ios-macabi -target-variant arm64-apple-macos`
instead, ld64 crashes!)
This results in two -platform_version flags being passed to the linker.
ld64 also verifies that the iOS SDK version is at least 13.1. We don't do that
yet. But ld64 also does that for other platforms and we don't. So we need to
do that at some point, but not in this patch.
Only dylib and bundle outputs can be zippered.
I verified that a Catalyst app linked against a dylib created with
clang -shared foo.cc -o libfoo.dylib \
-target arm64-apple-macos \
-target-variant arm64-apple-ios-macabi \
-Wl,-install_name,@rpath/libfoo.dylib \
-fuse-ld=$PWD/out/gn/bin/ld64.lld
runs successfully. (The app calls a function `f()` in libfoo.dylib
that returns a const char* "foo", and NSLog(@"%s")s it.)
ld64 is a bit more permissive when writing zippered outputs,
see references to "unzippered twins". That's not implemented yet.
(If anybody wants to implement that, D124275 is a good start.)
Differential Revision: https://reviews.llvm.org/D124887
This change implements --icf=safe for MachO based on addrsig section that is implemented in D123751.
Reviewed By: int3, #lld-macho
Differential Revision: https://reviews.llvm.org/D123752
Before this,
clang empty.cc -target x86_64-apple-ios13.1-macabi \
-framework CoreServices -fuse-ld=lld
would error out with
ld64.lld: error: path/to/MacOSX.sdk/System/Library/Frameworks/
CoreServices.framework/Versions/A/Frameworks/CarbonCore.framework/
Versions/A/CarbonCore.tbd(
/System/Library/Frameworks/
CoreServices.framework/Versions/A/Frameworks/CarbonCore.framework/
Versions/A/CarbonCore) is incompatible with x86_64 (macCatalyst)
Now it works, like with ld64.
Differential Revision: https://reviews.llvm.org/D124336
A "zippered" dylib contains several LC_BUILD_VERSION load commands, usually
one each for "normal" macOS and one for macCatalyst.
These are usually created by passing something like
-shared -target arm64-apple-macos -darwin-target-variant arm64-apple-ios13.1-macabi
to clang, which turns it into
-platform_version macos 12.0.0 12.3 -platform_version "mac catalyst" 14.0.0 15.4
for the linker.
ld64.lld can read these files fine, but it can't write them. Before this
change, it would just silently use the last -platform_version flag and ignore
the rest.
This change adds a warning that writing zippered dylibs isn't implemented yet
instead.
Sadly, parts of ld64.lld's test suite relied on the previous
"silently use last flag" semantics for its test suite: `%lld` always expanded
to `ld64.lld -platform_version macos 10.15 11.0` and tests that wanted a
different value passed a 2nd `-platform_version` flag later on. But this now
produces a warning if the platform passed to `-platform_version` is not `macos`.
There weren't very many cases of this, so move these to use `%no-arg-lld` and
manually pass `-arch`.
Differential Revision: https://reviews.llvm.org/D124106
{D123302} got me looking deeper at `includeInSymtab`. I thought it was a
little odd that there were excluded (live) symbols for which
`includeInSymtab` was false; we shouldn't have so many different ways to
exclude a symbol. As such, this diff makes the `L`-prefixed-symbol
exclusion code use `includeInSymtab` too. (Note that as part of our
support for `__eh_frame`, we will also be excluding all `__eh_frame`
symbols from the symtab in a future diff.)
Another thing I noticed is that the `emitStabs` code never has to deal
with excluded symbols because `SymtabSection::finalize()` already
filters them out. As such, I've updated the comments and asserts from
{D123302} to reflect this.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D123433
{D118797} means that we can now check the name/segname of a given
section directly, instead of having to look those properties up on one
of its subsections. This allows us to simplify our code.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D123275
This removes options for performing LTO with the legacy pass
manager in LLD. Options that explicitly enable the new pass manager
are retained as no-ops.
Differential Revision: https://reviews.llvm.org/D123219
Or rather, error out if it is set to something other than ON. This
removes the ability to enable the legacy pass manager by default,
but does not remove the ability to explicitly enable it through
various flags like -flegacy-pass-manager or -enable-new-pm=0.
I checked, and our test suite definitely doesn't pass with
LLVM_ENABLE_NEW_PASS_MANAGER=OFF anymore.
Differential Revision: https://reviews.llvm.org/D123126
`config->priorities` has been used to hold the intermediate state during the construction of the order in which sections should be laid out. This is not a good place to hold this state since the intermediate state is not a "configuration" for LLD. It should be encapsulated in a class for building a mapping from section to priority (which I created in this diff as the `PriorityBuilder` class).
The same thing is being done for `config->callGraphProfile`.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D122156
This was based off @thakis' draft in {D103517}. I employed templates to ensure
the support for `-why_live` wouldn't slow down the regular non-why-live code
path.
No stat sig perf difference on my 3.2 GHz 16-Core Intel Xeon W:
base diff difference (95% CI)
sys_time 1.195 ± 0.015 1.199 ± 0.022 [ -0.4% .. +1.0%]
user_time 3.716 ± 0.022 3.701 ± 0.025 [ -0.7% .. -0.1%]
wall_time 4.606 ± 0.034 4.597 ± 0.046 [ -0.6% .. +0.2%]
samples 44 37
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D120377
If both an order file and a call graph profile are present, the edges of the
call graph which use symbols present in the order file are not used. All of
the symbols in the order file will appear at the beginning of the section just
as they do currently. In other words, the highest priority derived from the
call graph will be below the lowest priority derived from the order file.
Practically, this change renames CallGraphSort.{h,cpp} to SectionPriorities.{h,cpp},
and most order file and call graph profile related code is moved into the new
file to reduce duplication.
Differential Revision: https://reviews.llvm.org/D117354
By unsetting this property, we are now able to internalize more symbols
during LTO. I compared the output of `-save-temps` for both LLD and
ld64, and we now match ld64's behavior as far as `lto-internalize.ll` is
concerned.
(Thanks @smeenai for working on an initial version of this diff!)
Fixes https://github.com/llvm/llvm-project/issues/50574.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D119372
Adds `-pagezero_size`. `-pagezero_size` commonly used for kernel development.
`-pagezero_size` changes the `__PAGEZERO` size, removing that segment if it is set to zero.
One of the four flags from {D118570}
Now with error messages and tests.
Differential Revision: https://reviews.llvm.org/D118724
Earlier in LLD's evolution, I tried to create the illusion that
subsections were indistinguishable from "top-level" sections. Thus, even
though the subsections shared many common field values, I hid those
common values away in a private Shared struct (see D105305). More
recently, however, @gkm added a public `Section` struct in D113241 that
served as an explicit way to store values that are common to an entire
set of subsections (aka InputSections). Now that we have another "common
value" struct, `Shared` has been rendered redundant. All its fields can
be moved into `Section` instead, and the pointer to `Shared` can be replaced
with a pointer to `Section`.
This `Section` pointer also has the advantage of letting us inspect other
subsections easily, simplifying the implementation of {D118798}.
P.S. I do think that having both `Section` and `InputSection` makes for
a slightly confusing naming scheme. I considered renaming `InputSection`
to `Subsection`, but that would break the symmetry with `OutputSection`.
It would also make us deviate from LLD-ELF's naming scheme.
This change is perf-neutral on my 3.2 GHz 16-Core Intel Xeon W machine:
base diff difference (95% CI)
sys_time 1.258 ± 0.031 1.248 ± 0.023 [ -1.6% .. +0.1%]
user_time 3.659 ± 0.047 3.658 ± 0.041 [ -0.5% .. +0.4%]
wall_time 4.640 ± 0.085 4.625 ± 0.063 [ -1.0% .. +0.3%]
samples 49 61
There's also no stat sig change in RSS (as measured by `time -l`):
base diff difference (95% CI)
time 998038627.097 ± 13567305.958 1003327715.556 ± 15210451.236 [ -0.2% .. +1.2%]
samples 31 36
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D118797
In the case your framework bundles contain relocatable objects, and your
objects include LC_LINKER_OPTIONs for the framework, previously they
would not be deduplicated like they would have if they were static
archives. This was also the case if you passed `-framework` for the
framework as well.
Reviewed By: #lld-macho, thakis, oontvoo
Differential Revision: https://reviews.llvm.org/D114841
This is a ld64 option equivalent to `-sectcreate seg sect /dev/null`
that's useful for creating sections like the RESTRICT section.
Differential Revision: https://reviews.llvm.org/D117749
This flag is the default, so in ld64 it is not implemented, but it can
be useful to negate previous -all_load arguments. Specifically if your
build system has some global linker flags, that you may want to negate
for specific links. We use something like this today to make sure some
C++ symbols are automatically discovered for all links, which passing
-all_load hides.
Differential Revision: https://reviews.llvm.org/D117629
In ld.lld, when an ObjFile/BitcodeFile is read in --start-lib state, the file is
given archive semantics. --end-lib closes the previous --start-lib. A build
system can use this feature as an alternative to archives. This patch ports
the feature to lld-macho.
--start-lib and --end-lib are positional, unlike usual ld64 options.
I think the slight drawback does not matter as (a) reusing option names
make build systems convenient (b) `--start-lib a.o b.o --end-lib` conveys more
information than an alternative design: `-objlib a.o -objlib b.o` because
--start-lib makes it clear which objects are in the same conceptual archive.
This provides flexibility (c) `-objlib`/`-filelist` interaction may be weird.
Close https://github.com/llvm/llvm-project/issues/52931
Reviewed By: #lld-macho, Jez Ng, oontvoo
Differential Revision: https://reviews.llvm.org/D116913
It's still uncertain but whether we want to have `deduplicate-literals` be the
default flag for LLD out of the box or not. If `deduplicate-literals` is the default
behavior, then we will need a way override it and not deduplicate. Luckily, we
have `no_deduplicate` to fill this gap. For now, I've set the default to be false
which aligns with the existing behavior. That can only always be changed after
discussions on D117250.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D117387
Move all variables at file-scope or function-static-scope into a hosting structure (lld::CommonLinkerContext) that lives at lldMain()-scope. Drivers will inherit from this structure and add their own global state, in the same way as for the existing COFFLinkerContext.
See discussion in https://lists.llvm.org/pipermail/llvm-dev/2021-June/151184.html
Differential Revision: https://reviews.llvm.org/D108850
The PlatformKind/PlatformType enums contain the same information, which requires
them to be kept in-sync. This commit changes over to PlatformType as the sole
source of truth, which allows the removal of the redundant PlatformKind.
The majority of the changes were in LLD and TextAPI.
Reviewed By: cishida
Differential Revision: https://reviews.llvm.org/D117163
Depends on D112160
This adds the new options `--call-graph-profile-sort` (default),
`--no-call-graph-profile-sort` and `--print-symbol-order=`. If call graph
profile sorting is enabled, reads `__LLVM,__cg_profile` sections from object
files and uses the resulting graph to put callees and callers close to each
other in the final binary via the C3 clustering heuristic.
Differential Revision: https://reviews.llvm.org/D112164
ld64 doesn't warn on builds using `-install_name` if it's a bundle. But, the
current warning is nice to have because `install_name` only works with dylib.
To prevent an overflow of warnings in build logs and have parity with ld64,
create a `--warn-dylib-install-name` and `--warn-no-dylib-install-name` flag
that enables this LLD specific warning.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D113534
In order to keep signal:noise high for the `__eh_frame` diff, I have teased-out the NFC changes and put them here.
Differential Revision: https://reviews.llvm.org/D114017
This is an NFC diff that prepares for pruning & relocating `__eh_frame`.
Along the way, I made the following changes to ...
* clarify usage of `section` vs. `subsection`
* remove `map` & `vec` from type names
* disambiguate class `Section` from template parameter `SectionHeader`.
Differential Revision: https://reviews.llvm.org/D113241
autohide symbols behaves similarly to private_extern symbols.
However, LD64 allows exporting autohide symbols. LLD currently does not.
This patch allows LLD to export them.
Differential Revision: https://reviews.llvm.org/D113167
(Split from D113167)
Benchmarking on one of our large apps which exports a few thousands symbols,
this showed an improvement of ~17%.
x ./LLD_no_parallel.txt
+ ./LLD_with_parallel.txt
N Min Max Median Avg Stddev
x 10 84.01 89.41 88.64 87.693 1.7424061
+ 10 71.9 74.29 72.63 72.753 0.77734663
Difference at 95.0% confidence
-14.94 +/- 1.26763
-17.0367% +/- 1.44553%
(Student's t, pooled s = 1.34912)
(wallclock)
Differential Revision: https://reviews.llvm.org/D113820
Previously if you passed `-oso_prefix path/to/foo/` with a trailing
slash at the end, using `real_path` would remove that slash, but that
slash is necessary to make sure OSO prefix paths end up as valid
relative paths instead of starting with `/`.
Differential Revision: https://reviews.llvm.org/D113541
This removes the tablegen based parsing of LC_LINKER_OPTION since it can
only actually contain a very small number of potential arguments. In our
project with tablegen this took 5 seconds before.
This replaces https://reviews.llvm.org/D113075
Differential Revision: https://reviews.llvm.org/D113235
This undocumented ld64 flag, based on the most recent ld64 source dump
from Xcode 12, only applies to i386. It seems like on all newer
architectures this behavior is the default.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D113070
By default with ld64, architecture mismatches are just warnings, then
this flag can be passed to make these fail. This matches that behavior.
Reviewed By: int3, #lld-macho
Differential Revision: https://reviews.llvm.org/D113082
On our large iOS project this took a link from 1 minute 45 seconds to 45
seconds. For reference ld64 does the same link in ~20 seconds.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D113063
This matches ld64, and it's conceivable that projects try to read
this information off stderr for that reason.
--version keeps writing to stdout.
Differential Revision: https://reviews.llvm.org/D113020
`fatal` should only be used for malformed inputs according to
ErrorHandler.h; `error` is more appropriate for missing arguments,
accompanied by a check to bail out early in case of the error. Some
tests need to be adjusted accordingly.
Makes `lld/test/MachO/arch.s` pass with `LLD_IN_TEST=2`.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D112879
We need to reset global state between runs, similar to the other ports.
There's some file-static state which needs to be reset as well and we
need to add some new helpers for that.
With this change, most LLD Mach-O tests pass with `LLD_IN_TEST=2` (which
runs the linker twice on each test). Some tests will be fixed by the
remainder of this stack, and the rest are fundamentally incompatible
with that mode (e.g. they intentionally throw fatal errors).
Fixes PR52070.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D112878
In particular, they should not cause archives to be eagerly loaded. This
matches ld64's behavior.
Fixes PR52246.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D112756
There are a couple internal builds that require the use of this flag.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D112594