I get to my work directory through a symlink, so the pathnames the
tests get for their build artifacts etc are via that symlink. There
are three tests which compare those symlink paths to a directory
received from dyld on macOS, which is the actual real pathname.
These tests have always failed for me on my dekstop but I finally
sat down to figure out why. Easy quick fix.
This was inspired by D109336 which got reverted because we didn't want
the test to fail silently. This patch prints a more informative error
message when we fail to parse the simctl output while still failing the
test.
Differential revision: https://reviews.llvm.org/D126217
After 9611282c, TestGdbRemoteThreadsInStopReply is not non-deterministic
-- instead it deterministically fails due to extra threads created by
std::thread thread pool.
Adjust the tests to account for that.
The tests enabled in 9e699595 are not passing reliably -- sometimes they
report seeing fewer threads than expected.
Based on my (limited) research, this is not a lldb bug, but simply a
consequence of the operating system reporting their presence
asynchronously -- they're reported when they are scheduled to run (or
something similar), and not at the time of the CreateThread call.
To fix this, I add some additional synchronization to the test inferior,
which makes sure that the created thread is alive before continuing to
do other things.
D119167 changed the meaning of that test by removing the use of the
interrupt packet. I did not notice this because the interrupting
happened in a shared utility function.
This patch restores the original meaning of the test, but (almost)
avoids sleeps by using process stdout to synchronize. Sadly, this means
the test stays disabled on windows, as it does not implement output
forwarding.
A couple of additional tests pass with that patch. One new test fails
(because it's not testing a slightly different thing). I'll update it
later to restore the original meaning (I don't want to revert as the net
effect is still very positive), but for now this gets the bot green.
Instead of using sleeps, have the inferior notify us (via a trap opcode) that
the requested number of threads have been created.
This allows us to get rid of some fairly dodgy test utility code --
wait_for_thread_count seemed like it was waiting for the threads to
appear, but it never actually let the inferior run, so it only succeeded
if the threads were already started when the function was called. Since
the function was called after a fairly small delay (1s, usually), this
is probably the reason why the tests were failing on some bots.
Differential Revision: https://reviews.llvm.org/D119167
We have been noticing issues with the lldb bots on builds using versions below clang 14 and dwarf 2, so to make sure we can get clean builds for a while, we are disabling the tests for those versions
Differential Revision: https://reviews.llvm.org/D118395
We have been noticing issues with the lldb bots on builds using versions below clang 14 and dwarf 2, so to make sure we can get clean builds for a while, we are disabling the tests for those versions
Differential Revision: https://reviews.llvm.org/D118395
Implement the qXfer:siginfo:read that is used to read the siginfo_t
(extended signal information) for the current thread. This is currently
implemented on FreeBSD and Linux.
Differential Revision: https://reviews.llvm.org/D117113
The lldb-server code is currently set up in a way that each
NativeProcess instance does its own waitpid handling. This works fine
for BSDs, where the code can do a waitpid(process_id), and get
information for all threads in that process.
The situation is trickier on linux, because waitpid(pid) will only
return information for the main thread of the process (one whose tid ==
pid). For this reason the linux code does a waitpid(-1), to get
information for all threads. This was fine while we were supporting just
a single process, but becomes a problem when we have multiple processes
as they end up stealing each others events.
There are two possible solutions to this problem:
- call waitpid(-1) centrally, and then dispatch the events to the
appropriate process
- have each process call waitpid(tid) for all the threads it manages
This patch implements the second approach. Besides fitting better into
the existing design, it also has the added benefit of ensuring
predictable ordering for thread/process creation events (which come in
pairs -- one for the parent and one for the child). The first approach
OTOH, would make this ordering even more complicated since we would
have to keep the half-threads hanging in mid-air until we find the
process we should attach them to.
The downside to this approach is an increased number of syscalls (one
waitpid for each thread), but I think we're pretty far from optimizing
things like this, and so the cleanliness of the design is worth it.
The included test reproduces the circumstances which should demonstrate
the bug (which manifests as a hung test), but I have not been able to
get it to fail. The only place I've seen this failure modes are very
rare hangs in the thread sanitizer tests (tsan forks an addr2line
process to produce its error messages).
Differential Revision: https://reviews.llvm.org/D116372
[NFC] This patch replaces master and slave with primary and secondary
respectively when referring to pseudoterminals/file descriptors.
Reviewed By: clayborg, teemperor
Differential Revision: https://reviews.llvm.org/D113687
Unify the listen and connect code inside lldb-server to use
ConnectionFileDescriptor uniformly rather than a mix of it and Acceptor.
This involves:
- adding a function to map legacy values of host:port parameter
(including legacy server URLs) into CFD-style URLs
- adding a callback to return "local socket id" (i.e. UNIX socket path
or TCP port number) between listen() and accept() calls in CFD
- adding a "unix-abstract-accept" scheme to CFD
As an additional advantage, this permits lldb-server to accept any URL
known to CFD including the new serial:// scheme. Effectively,
lldb-server can now listen on the serial port. Tests for connecting
over a pty are added to test that.
Differential Revision: https://reviews.llvm.org/D111964
These tests fail every 10 or so runs on Windows causing both local failures as well as buildbot failures.
Differential Revision: https://reviews.llvm.org/D111659
PT_COREDUMP is a relatively recent addition. Use an #ifdef to skip it
if the underlying system does not support it.
Differential Revision: https://reviews.llvm.org/D111214
This reverts commit 47dd1f6428.
After discussing with Jim Ingham, we agreed to leave the test as-is
so we can catch any CI problems instead of silently skipping the test.
xcodebuild, which is invoked by the apple_simulator_test decorator, may
may return a successful status even if it was unable to run due to the
authorization agent denying it. This causes the TestAppleSimulatorOSType
to run when it shouldn't, and throw an excpection when parsing the JSON
that lists the simulators available. Wrap the json parsing in a
try/except block and if it fails, skip the ttest.
Differential Revision: https://reviews.llvm.org/D109336
Fall back to QEnvironmentHexEncoded if QEnvironment is not supported.
The latter packet is an LLDB extension, while the former is universally
supported.
Add tests for both QEnvironment and QEnvironmentHexEncoded packets,
including both use due to characters that need escaping and fallback
when QEnvironment is not supported.
Differential Revision: https://reviews.llvm.org/D108018
Implement the simpler vRun packet and prefer it over the A packet.
Unlike the latter, it tranmits command-line arguments without redundant
indices and lengths. This also improves GDB compatibility since modern
versions of gdbserver do not implement the A packet at all.
Make qLaunchSuccess not obligatory when using vRun. It is not
implemented by gdbserver, and since vRun returns the stop reason,
we can assume it to be successful.
Differential Revision: https://reviews.llvm.org/D107931
Add two new commands 'platform get-file-permissions' and 'platform
file-exists' for the respective bits of LLDB protocol. Add tests for
them. Fix error handling in GetFilePermissions().
Differential Revision: https://reviews.llvm.org/D107809
Add a new SaveCore() process method that can be used to request a core
dump. This is currently implemented on NetBSD via the PT_DUMPCORE
ptrace(2) request, and enabled via 'savecore' extension.
Protocol-wise, a new qSaveCore packet is introduced. It accepts zero
or more semicolon-separated key:value options, invokes the core dump
and returns a key:value response. Currently the only option supported
is "path-hint", and the return value contains the "path" actually used.
The support for the feature is exposed via qSaveCore qSupported feature.
Differential Revision: https://reviews.llvm.org/D101285
Use hexadecimal numbers rather than decimal in various vFile packets
in order to fix compatibility with gdbserver. This also changes the few
custom LLDB packets -- while technically they do not have to be changed,
it is easier to use the same syntax consistently across LLDB.
Differential Revision: https://reviews.llvm.org/D107475
Following tests fail on Arm/AArch64 randomly with timeouts:
TestMultilineNavigation.py
TestBatchMode.py
TestUnicode.py
TestGdbRemote_vContThreads.py
I am marking them as skipped until we find a away make to pass reliably.
The type field is a signed integer.
(https://sourceware.org/gdb/current/onlinedocs/gdb/General-Query-Packets.html)
However it's not packed in the packet in the way
you might think. For example the type -1 should be:
qMemTags:<addr>,<len>:ffffffff
Instead of:
qMemTags:<addr>,<len>:-1
This change makes lldb-server's parsing more strict
and adds more tests to check that we handle negative types
correctly in lldb and lldb-server.
We only support one tag type value at this point,
for AArch64 MTE, which is positive. So this doesn't change
any of those interactions. It just brings us in line with GDB.
Also check that the test target has MTE. Previously
we just checked that we were AArch64 with a toolchain
that supports MTE.
Finally, update the tag type check for QMemTags to use
the same conversion steps that qMemTags now does.
Using static_cast can invoke UB and though we do do a limit
check to avoid this, I think it's clearer with the new method.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D104914
This is implemented using the QMemTags packet, as specified
by GDB in:
https://sourceware.org/gdb/current/onlinedocs/gdb/General-Query-Packets.html#General-Query-Packets
(recall that qMemTags was previously added to read tags)
On receipt of a valid packet lldb-server will:
* align the given address and length to granules
(most of the time lldb will have already done this
but the specification doesn't guarantee it)
* Repeat the supplied tags as many times as needed to cover
the range. (if tags > range we just use as many as needed)
* Call ptrace POKEMTETAGS to write the tags.
The ptrace step will loop just like the tag read does,
until all tags are written or we get an error.
Meaning that if ptrace succeeds it could be a partial write.
So we call it again and if we then get an error, return an error to
lldb.
We are not going to attempt to restore tags after a partial
write followed by an error. This matches the behaviour of the
existing memory writes.
The lldb-server tests have been extended to include read and
write in the same test file. With some updated function names
since "qMemTags" vs "QMemTags" isn't very clear when they're
next to each other.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D105180
This patch adds a helper function to test target architecture is
AArch64 or not. This also tightens isAArch64* helpers by adding an
extra architecture check.
Reviewed By: DavidSpickett
Differential Revision: https://reviews.llvm.org/D105483